

Moving to the Cloud

This page intentionally left blank

Moving to the Cloud
Developing Apps in the New
World of Cloud Computing

Dinkar Sitaram

Geetha Manjunath

Technical Editor

David R. Deily

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Chris Katsaropoulos
Development Editor: Heather Scherer
Project Manager: A. B. McGee
Designer: Alisa Andreola

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

Credits for the screenshot images throughout the book are as follows:
Screenshots from Amazon.com, Cloudwatch © Amazon.com, Inc.; Screenshots of Nimsoft © CA Technologies;
Screenshots of Gomez © Compuware Corp.; Screenshots from Facebook.com © Facebook, Inc.; Screenshots of
Google App Engine, Google Docs © Google, Inc.; Screenshots of HP CloudSystem, Cells-as-a-Service,
OpenCirrus © Hewlett-Packard Company; Screenshots of Windows Azure © Microsoft Corporation;
Screenshots of Gluster © Red Hat, Inc.; Screenshots from Force.com, Salesforce.com © Salesforce.com, Inc.;
Screenshots of Netcharts © Visual Mining, Inc.; Screenshots of Yahoo! Pipes, YQL © Yahoo! Inc.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies
and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing
Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods or professional practices, may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information or methods described herein. In using such information or methods they should be mindful of
their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Sitaram, Dinkar.
Moving to the cloud: developing apps in the new world of cloud computing / Dinkar Sitaram and
Geetha Manjunath; David R. Deily, technical editor.

p. cm.
Includes bibliographical references.
ISBN 978-1-59749-725-1 (pbk.)

1. Cloud computing. 2. Internet programming. 3. Application programs–Development. I. Manjunath, Geetha.
II. Title.
QA76.585.S58 2011
004.6782–dc23

2011042034

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Syngress publications
visit our website at www.syngress.com

Typeset by: diacriTech, Chennai, India

Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
http://www.syngress.com

Dedication

To Swarna, Tejas, and Tanvi for their encouragement
and support.
—Dinkar

To my dear husband Manjunath, wonderful kids Abhiram
and Anagha and my loving parents.

—Geetha

This page intentionally left blank

Contents

About the Authors . xiii
About the Technical Editor . xv
Contributors . xvii
Foreword . xxi
Preface . xxiii

CHAPTER 1 Introduction. 1
Introduction . 1
Where Are We Today?. 2

Evolution of the Web. 3
The Future Evolution . 6
What Is Cloud Computing? . 8
Cloud Deployment Models . 9

Private vs. Public Clouds . 10
Business Drivers for Cloud Computing. 12
Introduction to Cloud Technologies . 13

Infrastructure as a Service . 15
Platform as a Service. 16
Software as a Service. 17
Technology Challenges . 18

Summary. 19
References . 20

CHAPTER 2 Infrastructure as a Service. 23
Introduction . 23
Storage as a Service: Amazon Storage Services 24

Amazon Simple Storage Service (S3) . 24
Amazon Simple DB. 30
Amazon Relational Database Service. 31

Compute as a Service: Amazon Elastic Compute Cloud (EC2). . . . 32
Overview of Amazon EC2. 32
Simple EC2 Example: Setting up a Web Server 42
Using EC2 for Pustak Portal . 47

HP CloudSystem Matrix . 53
Basic Platform Features . 54
Implementing the Pustak Portal Infrastructure 55
Cells-as-a-Service . 59

vii

Introduction to Cells-as-a-Service. 60
Multi-tenancy: Supporting Multiple Authors to Host Books. . . . 64
Load Balancing the Author Web Site . 67

Summary. 68
References . 70

CHAPTER 3 Platform as a Service. 73
Introduction . 73
Windows Azure . 74

A “Hello World” Example . 75
Example: Passing a Message. 77
Azure Test and Deployment . 82
Technical Details of the Azure Platform. 90
Azure Programming Model . 97
Using Azure Cloud Storage Services . 98
Handling the Cloud Challenges . 101
Designing Pustak Portal in Azure. 105

Google App Engine. 108
Getting Started. 108
Developing a Google App Engine Application 108
Using Persistent Storage. 111

Platform as a Service: Storage Aspects . 114
Amazon Web Services: Storage. 115
IBM SmartCloud: pureXML. 116

Apache Hadoop. 126
MapReduce. 128
Hadoop Distributed File System. 134

Mashups. 136
Yahoo! Pipes . 137
Yahoo! Query Language. 141

Summary. 148
References . 150

CHAPTER 4 Software as a Service. 153
Introduction . 153
CRM as a Service, Salesforce.com. 154

A Feature Walk Through. 154
Customizing Salesforce.com. 157
Force.com: A Platform for CRM as a Service 158
Programming on Salesforce.com and Force.com. 161

viii Contents

Social Computing Services . 171
What Constitutes “Social” Computing? . 171
Case Study: Facebook. 173
Extending Open Graph. 180
Social Media Web Site: Picasa . 181
Micro-Blogging: Twitter . 185
Open Social Platform from Google . 188
Privacy Issues: OAuth . 188

Document Services: Google Docs . 193
Using Google Docs Portal . 193
Using Google Docs APIs . 195

Summary. 200
References . 202

CHAPTER 5 Paradigms for Developing Cloud Applications. 205
Introduction . 205
Scalable Data Storage Techniques . 205

Example: Pustak Portal Data . 207
Scaling Storage: Partitioning . 208
NoSQL Systems: Key-Value Stores . 217
NoSQL Systems: Object Databases . 222

MapReduce Revisited. 224
A Deeper Look at the Working of MapReduce Programs. . . . 225
Fundamental Concepts Underlying MapReduce
Paradigm. 229
Some Algorithms Using MapReduce. 232

Rich Internet Applications . 237
Getting Started. 237
A Simple (Hello World) Example . 239
Client-Server Example; RSS Feed Reader 242
Advanced Platform Functionality . 244
Advanced Example: Implementing Pustak Portal 245

Summary. 249
References . 251

CHAPTER 6 Addressing the Cloud Challenges. 255
Introduction . 255
Scaling Computation. 256

Scale Out versus Scale Up. 256
Amdahl’s Law. 257
Scaling Cloud Applications with a Reverse Proxy. 258
Hybrid Cloud and Cloud Bursting: OpenNebula 260

Contents ix

Design of a Scalable Cloud Platform: Eucalyptus 263
ZooKeeper: A Scalable Distributed Coordination System. . . . 266

Scaling Storage. 272
CAP Theorem. 272
Implementing Weak Consistency. 275
Consistency in NoSQL Systems. 280

Multi-Tenancy. 284
Multi-Tenancy Levels . 285
Tenants and Users . 286
Authentication. 287
Implementing Multi-Tenancy: Resource Sharing. 287
Case Study: Multi-Tenancy in Salesforce.com. 291
Multi-Tenancy and Security in Hadoop. 294

Availability . 298
Failure Detection. 298
Application Recovery. 299
Librato Availability Services . 299
Use of Web Services Model . 300

Summary. 301
References . 303

CHAPTER 7 Designing Cloud Security . 307
Introduction . 307
Cloud Security Requirements and Best Practices 308

Physical Security . 309
Virtual Security . 309

Risk Management . 311
Risk Management Concepts . 311
Risk Management Process . 312

Security Design Patterns . 313
Defense in Depth. 313
Honeypots . 313
Sandboxes . 313
Network Patterns . 314
Common Management Database . 314
Example: Security Design for a PaaS System. 314

Security Architecture Standards . 316
SSE-CMM. 316
ISO/IEC 27001-27006. 316
European Network and Information Security
Agency (ENISA). 317
ITIL Security Management . 317

x Contents

Legal and Regulatory Issues . 318
Third-party Issues. 319
Data Handling. 320
Litigation Related Issues . 322

Selecting a Cloud Service Provider . 323
Listing the Risks . 323
Security Criteria for Selecting a Cloud Service Provider 324

Cloud Security Evaluation Frameworks . 325
Cloud Security Alliance. 325
Trusted Computing Group. 326

Summary. 326
References . 327

CHAPTER 8 Managing the Cloud. 329
Introduction . 329
Managing IaaS. 330

Management of CloudSystem Matrix . 330
EC2 Management: Amazon CloudWatch 336

Managing PaaS. 339
Management of Windows Azure . 339

Managing SaaS. 342
Monitoring Force.com: Netcharts . 342
Monitoring Force.com: Nimsoft . 342

Other Cloud-Scale Management Systems. 344
HP Cloud Assure . 344
RightScale . 345
Compuware. 346

Summary. 347
References . 348

CHAPTER 9 Related Technologies . 351
Introduction . 351
Server Virtualization. 351

Hypervisor-based Virtualization . 353
Techniques for Hypervisors . 354
Hardware Support for Virtualization . 356

Two Popular Hypervisors . 361
VMware Virtualization Software . 361
XenServer Virtual Machine Monitor . 362

Storage Virtualization . 363
File Virtualization . 363
Block Virtualization . 369

Contents xi

Grid Computing. 374
Overview of Grid Computing . 374
A Closer Look at Grid Technologies . 375
Comparing Grid and Cloud. 378

Other Cloud-Related Technologies . 381
Distributed Computing. 381
Utility Computing. 383
Autonomic Computing. 383
Application Service Providers . 384

Summary. 384
References . 385

CHAPTER 10 Future Trends and Research Directions. 389
Introduction . 389
Emerging Standards . 389

Storage Networking Industry Association (SNIA) 390
DMTF Reference Architecture . 394
NIST. 396
IEEE. 397
Open Grid Forum (OGF). 397

Cloud Benchmarks . 398
Cloudstone. 399
Yahoo! Cloud Serving Benchmark . 402
CloudCMP. 405

End-User Programming. 408
Visual Programming. 409
Programming by Example . 409

Open Cirrus . 415
Process of Getting onto Open Cirrus . 415
Management of Large Scale Cloud Research Tests 416
Node Reservation System. 418
Scalable Monitoring System. 419
Cloud Sustainability Dashboard . 419

Open Research Problems in Cloud Computing. 419
Summary. 423
References . 424

Index. 427

xii Contents

About the Authors

Dr. Dinkar Sitaram is a Chief Technologist at Hewlett
Packard, Systems Technology and Software Division, in
Bangalore, India. He is one of the key individuals responsible
for driving file systems and storage strategy, including cloud
storage. Dr. Sitaram is also responsible for University Rela-
tions, and Innovation activities at HP. His R&D efforts have
resulted in over a dozen granted US patents. He is co-author
of Multimedia Servers: Applications, Environments and
Design. Morgan Kaufmann, 2000. Dr. Sitaram received his

Ph. D from the University of Wisconsin-Madison and his B. Tech from IIT Kharag-
pur. He joined as a research staff member in IBM’s Research Division at the IBM
T. J. Watson Research Center. At IBM, Dr. Sitaram received an IBM Outstanding
Innovation Award (an IBM Corporate Award) as well as IBM Research Division
Award and several IBM Invention Achievement Awards for his patents and research.
He also received outstanding paper awards for his work, and served on the editorial
board of the Journal of High-Speed Networking.

Subsequently, he returned to India as Director of the Technology Group at
Novell Corp. Bangalore. The group developed many innovative products in addi-
tion to filing for many patents and standards proposals. Dr. Sitaram received
Novell’s Employee of the Year award. Before joining HP, Dr. Sitaram was CTO
at Andiamo Systems India (a storage networking startup later acquired by Cisco),
responsible for architecture and technical direction of an advanced storage man-
agement solution.

Geetha Manjunath is a Senior Research Scientist and
Master Technologist at Hewlett Packard Research Labs in
India. She has been with HP since 1997 working on
research issues in multiple systems technologies. During
these years, she has developed many innovative solutions
and published many papers in the area of Embedded
Systems, Java Virtual Machine, Mobility, Grid Computing,
Storage Virtualization and Semantic Web. She is currently
leading a research project on cloud services for simplifying
web access for emerging markets. As a part of this

research, she conceptualized the notion of Tasklets and lead the development of a
cloud-based solution called SiteOnMobile that enables consumers to access web
tasks on low-end phones via SMS and Voice. The solution was awarded the
NASCOM Innovation Award 2009 and has been given a status of “HP Legend”.
It was also the winner of Technology Review India’s 2010 Grand Challenges for
Technologists (2010 TRGC) in the healthcare category.

xiii

Before joining HP, she was a senior technical member at Centre for Development
of Advanced Computing (C-DAC), Bangalore for 7 years – where was a core mem-
ber of PARAS system software team for a PARAM supercomputer and she lead a
research team to develop parallel compilers for distributed memory machines.

She is a gold medalist from Indian Institute of Science where she did her
Masters in Computer Science in 1991 and pursuing Ph. D at the time of this writ-
ing. She was awarded the TR Shammanna Best Student award from Bangalore
University in the Bachelors degree for topping across all branches of Engineering.
She holds four US patents with many more pending grant.

xiv About the Authors

About the Technical Editor

David R. Deily (CISSP, MCSE, SIX SIGMA) has more than 13 years of
experience in the management and IT consulting industry. He has designed and
implemented innovative approaches to solving complex business problems with the
alignment of both performance management and technology for increased IT
effectiveness.

He currently provides IT consulting and management services to both midsize and
Fortune 500 companies. His core competencies include delivering advanced infra-
structure consulting services centered on application/network performance, security,
infrastructure roadmap designs, virtualization / cloud, and support solutions that drive
efficiency, competitiveness, and business continuity. David consults with clients in
industries that include travel/leisure, banking/finance, retail, law and state and local
governments.

Mr. Deily has held leadership roles within corporate IT and management con-
sulting services organizations. He is currently a Senior Consultant at DATACORP
in Miami, FL. He would like to thank his wife Evora and daughter Drissa for their
continued support.

xv

This page intentionally left blank

Contributors

Badrinath Ramamurthy is a senior technologist at
Hewlett Packard, Bangalore. India. He has been with HP
since 2003 and has worked in the areas of High Perfor-
mance Computing, Semantic Web and Infrastructure Man-
agement. He currently works on HP’s Cloud Services.

During 1994–2003 he served on the faculty of the CSE
Department at the Indian Institute of Technology, Kharag-
pur. He spent the year 2002–2003 as a visiting researcher
at IRISA, France.

Badrinath obtained a Ph.D. in computer science from Rensselaer Polytechnic
Institute, NY, in 1994. He has over 30 refereed published research works in his
areas of interest. He has served as the General Co-Chair for the International
Conference on High-Performance Computing (HiPC) for the years 2006, 2007
and 2008.

In this book, Dr. Badrinath has contributed the section titled “Cells as a
Service” in Chapter 2.

Dejan Milojicic is a senior researcher and director of
Open Cirrus Cloud Computing testbed at Hewlett Packard
Labs. He has worked in the areas of operating systems
and distributed systems for more than 25 years. Dr. Milo-
jicic has published over 100 papers. He is an ACM distin-
guished engineer, IEEE Fellow and member of USENIX.
He received B.Sc. and M.Sc. degrees from University of
Belgrade and a Ph.D. from University of Kaiserslautern.
Prior to HP Labs, he worked at Institute “Mihajlo Pupin”,
and at OSF Research Institute.

In this book, Dr. Dejan has contributed the section titled “OpenCirrus” in
Chapter 10.

Devaraj Das is a co-founder of Hortonworks Inc, USA.
Devaraj is an Apache Hadoop committer and member of
the Apache Hadoop Project Management Committee. Prior
to co-founding Hortonworks, Devaraj was critical in making
Apache Hadoop a success at Yahoo! by designing,
implementing, leading and managing large and complex
core Apache Hadoop and Hadoop-related projects on
Yahoo!’s production clusters. Devaraj also worked as an
engineer at HP in Bangalore earlier in his career. He has

xvii

a Master’s degree from the Indian Institute of Science in Bangalore, India, and a
B.E. degree from Birla Institute of Technology and Science in Pilani, India.

In this book, Devaraj has shared his knowledge on advanced topics in Apache
Hadoop, specially in section titled “Multi-tenancy and security” of Chapter 6 and
"Data Flow in MapReduce" in Chapter 3.

Dibyendu Das is currently a Principal Member of Tech-
nical Staff in AMD India working on Open64 optimiz-
ing compilers. In previous avatars he has worked
extensively on optimizing compilers for PA-RISC and
IA-64 processors while at HP, performance/power ana-
lyses for Power-7 multi-cores at IBM and VLIW compi-
lers for Motorola. Dibyendu is an acknowledged expert
in the areas of optimizing compilers, parallel languages,
parallel and distributed processing and computer
architecture.

Dibyendu has a Ph.D. in computer science from IIT Kharagpur and an M.E.
and B.E. in computer science from IISc and Jadavpur University, respectively. He
is an active quizzer and quiz enthusiast and is involved with the Karnataka Quiz
Association.

In this book, Dr. Dibyendu has contributed the section titled “IBM Smart-
Cloud: pureXML” in Chapter 3.

Gopal R Srinivasa is a Sr. Research SDE with Microsoft
Research India. Before joining Microsoft, he worked for
Hewlett-Packard, Nokia Siemens Networks, and Cyber-
Guard Corporation. Along with cloud computing, his inter-
ests include software analytics and building large software
systems. Gopal has a Masters’ degree in computer science
from North Carolina State University.

In this book, Gopal has shared his expert knowledge
on Microsoft Azure in Chapter 3 as well as the section
titled “Managing PaaS” in Chapter 8.

Nigel Cook is an HP distinguished technologist and tech-
nical director for the HP CloudSystem program. He has
worked in areas of data center automation and distributed
management systems for over 20 years, spanning environ-
ments as diverse as embedded systems for power utility
control, telecom systems, and enterprise data center envir-
onments. At HP he created the BladeSystem Matrix Oper-
ating environment, and prior to that he served as chief
architect on the Adaptive Enterprise and Utility Data

xviii Contributors

Center programs. Prior to HP, he established and ran the US engineering opera-
tions of a software R+D development company specializing in telecom distributed
systems. He received a BEng from University of Queensland, and is currently pur-
suing an MSc degree from University of Colorado, Boulder in the area of cloud
computing based bioinformatics.

In this book, Nigel has contributed the section “HP CloudSystem Matrix” in
Chapter 2, as well as to the Chapter 8 on “Managing the Cloud”.

Prakash S Raghavendra has been a faculty member at the
IT Department of NITK, Surathkal from February 2009. He
received his doctorate from the Computer Science and
Automation Department (IISc, Bangalore) in 1998, after
graduating from IIT Madras in 1994.

Earlier, Dr. Prakash worked in the Kernel, Java and
Compilers Lab in Hewlett-Packard ISO in Bangalore from
1998 to 2007. Dr. Prakash has also worked for Adobe Sys-
tems, Bangalore from 2007 to 2009 in the area of flex
profilers.

Dr. Prakash’s current research interests include programming for heterogeneous
computing, Web usage mining and rich Internet apps. Dr. Prakash has been
honored with the ‘Intel Parallelism Content Award’ in 2011 and the ‘IBM Faculty
Award’ for the year 2010.

In this book, Dr. Prakash has contributed about Adobe RIA in the section
titled “Rich Internet Applications” in Chapter 5.

Praphul Chandra is a Research Scientist at HP Labs
India. He works on the simplifying web access and interac-
tion project. His primary area of interest is complex
networks in the context of social networks and information
networks like the Web. At HP Labs, he also works on
exploring new embedded systems architecture for emerging
markets.

He is the author of two books – Bulletproof Wireless
Security and Wi-Fi Telephony: Challenges and Solutions
for Voice over WLANs. He joined HP Labs in April 2006.

Prior to joining HP he was a senior design engineer at Texas Instruments (USA)
where he worked on Voice over IP with specific focus on wireless local area net-
works. He holds an M.S. in electrical engineering from Columbia University, NY,
a PG Diploma in public policy from University of London and a B.Tech. in
electronics and communication engineering from Institute of Technology, BHU.
His other interest areas are evolution and economics.

In this book, Praphul has shared his expert knowledge on Social networking in
the section titled “Social Computing Services” in Chapter 4.

Contributors xix

Vanish Talwar is a principal research scientist at HP
Labs, Palo Alto, researching management systems for next
generation data centers. His research interests include
distributed systems, operating systems, and computer
networks, with a focus on management technologies. He
received his Ph.D. degree in computer science from
the University of Illinois at Urbana-Champaign (UIUC).
Dr. Talwar is a recipient of the David J Kuck Best Masters
Thesis award from the Dept. of Computer Science, UIUC,
and has numerous patents and papers, including a book on
utility computing.

In this book, Dr. Vanish has contributed to the Chapter 8 titled “Managing the
Cloud” and sections on “DMTF” and “OpenCirrus” in Chapter 10.

xx Contributors

Foreword

Information is the most valuable resource in the 21st century. Whether for a
consumer looking for a restaurant in San Francisco, a small business woman check-
ing textile prices in Bangalore, or a financial services executive in London studying
stock market trends, information at the moment of decision is key in providing the
insights that afford the best outcome.

We now are sitting at a critical juncture of two of the most significant trends in
the information technology industry – the convergence of cloud computing and
mobile personal information devices into the Mobility/Cloud Ecosystem that delivers
next-generation personalized experiences using a scalable and secure information
infrastructure. This ecosystem will be able to store, process, and analyze massive
amounts of information around structured, unstructured and semi-structured data. All
this data will be accessed and analyzed at the speed of business.

In the past few years, the information technology industry began describing a
future where everything is delivered as a service via the cloud, from computing
resources to personal interactions. The future mobile internet will be 10 times the
size of the desktop internet, connecting more than 10 billion “devices” from
smartphones to wireless home appliances. Information access will then be as
ubiquitous as electricity. Research advancements that the IT industry is making
today will allow us to drive economies of scale into this next phase of computing
to create a world where increasing numbers of people will be able to participate
in and benefit from the information economy.

This book provides an excellent overview of all the transformations that are
taking place in the IT industry around Cloud computing, and that, in turn, are
transforming society. The book provides an overview of the key concepts of
cloud computing, analyzes how cloud computing is different from traditional com-
puting and how it enables new applications while providing highly scalable ver-
sions of traditional applications. It also describes the forces driving cloud
computing, describes a well-known taxonomy of cloud architectures, and dis-
cusses at a high level the technological challenges inherent in cloud computing.

The book covers key areas of the different models of cloud computing: infra-
structure as a service, platform as a service and software as a service. It then talks
about paradigms for developing cloud applications. It finally talks about cloud-
related technologies such as security, cloud management and virtualization.

HP Labs as the central research organization for Hewlett Packard has carried
out research in many aspects of cloud computing in the past decade. The authors
of the book are researchers in HP Labs India, and have contributed to many years
of research on these topics. They have been able to provide their own personal
research insight into the contents of the book and their vision of where this
technology is headed.

xxi

I wish the readers of the book the best of luck in their journey to cloud
computing!

Prith Banerjee
Senior Vice President of Research and

Director of HP Labs
Hewlett-Packard Company

xxii Foreword

Preface

First of all, thanks very much for choosing this book. We hope that you will like
reading it and learn something new during the process. We believe the depth and
breadth of the topics covered in the book will cater to a vast technical audience.
Technologists who have a very strong technical background in distributed computing
will probably like the real-life case studies of cloud platforms that enable them to get
a quick overview of current platforms without actually registering for trials and
experimenting with the examples. Developers who are very good in programming
traditional systems will probably like the simple and complex examples of multiple
cloud platforms that enable them to get started on programming to the cloud. It will
also give them a good overview of the fundamental concepts needed to program a
distributed system such as the cloud and learn new techniques to enable them to
write efficient, scalable cloud services. We believe even research students will find
the book useful to identify some open problems that are yet to be solved and help the
evolution of cloud technologies to address all the current gaps.

Having worked on different aspects of systems technology particularly related
to distributed computing for a number of years, we both were often discussing the
benefits of cloud computing and what realignment in technology and mindset that
the cloud required. In one such discussion, it dawned on us that a book based on
real case studies of cloud platforms can be very valuable to technologists and
developers, especially if we can cover the underlying technologies and concepts.
We felt that many of the books available on cloud computing seemed to have a
one-dimensional view of cloud computing. Some books equate cloud computing
to just a specific cloud platform, say Amazon or Azure. Other books discuss
cloud computing as if it is simply a new way of managing traditional data centers
in a more cost-effective manner. There is also no dearth of books that hype the
benefits of cloud computing in the ideal world.

In fact, the different perspectives about cloud computing that exist today remind
us of the well-known story of the six blind men and the elephant. The blind man
who caught hold of the elephant’s tail insisted that the elephant is like a rope, while
another who touched the elephant’s tusks said that the elephant is like a spear, and
so on. It definitely seemed to us that there is a need for a book that ties together the
different aspects of cloud computing, both at the depth as well as breadth. However,
we knew that covering all topics related to cloud in a single book, or even covering
all popular cloud platforms as case studies, was not really feasible. We decided to
cover at least three to four diverse case studies in each aspect of cloud computing
and get into the technical depth in each of those case studies.

The second motivation for writing this book is to provide sufficiently deep knowl-
edge to programmers and developers who will create the next generation of cloud
applications. Many existing books focus entirely upon writing programs, without
analyzing the key concepts or alternative implementations. It is our belief that in

xxiii

order to efficiently design programs it is necessary to have a good understanding of
the technology involved, so that intelligent trade-offs can be made. It is also
important to design appropriate algorithms and choose the right cloud platform so
that the solution to the given problem is scalable and efficient to execute on the
cloud. For example, many cloud platforms today offer automatic scaling. However,
in order to use this feature effectively, a high-level understanding of how the platform
handles scaling is required. It is also important to select the right algorithm for special
cloud platforms so that the solution to the given problem can be solved in the most
efficient way for the use case and cloud platform (such as Hadoop MapReduce).

The challenge for us has been how to cover all the facets of cloud computing
(provide a holistic view of the elephant) without writing a book that itself is as
large as an elephant. To achieve this, we have adopted the following strategy. First,
for each cloud platform, we provide a broad overview of the platform. This is fol-
lowed by detailed discussion of some specific aspect of the platform. This high-
level overview, together with a detailed study of a particular aspect of the platform,
will give readers a deep insight into the basic concepts and features underlying the
platform. For example, in the section on Salesforce.com, we start with a high-level
overview of the features, followed by detailed discussion of using the call center
features, programming under Salesforce.com, and important performance trade-offs
for writing programs. Further sections cover the platform architecture that enables
Salesforce.com, and some of the important underlying implementation details. The
technology topics are also discussed in depth. For example, MapReduce is first
introduced in Chapter 3 with an overview of the concept and usage from a pro-
gramming perspective. In later sections, a detailed look at the new programming
paradigm that MapReduce enables along with fundamentals of functional program-
ming, data parallelism and even theoretical formulation of the MapReduce problem
are introduced. Many examples of how one can redesign an algorithm to suit the
MapReduce platform are given. Finally, the internal architecture of the MapReduce
platform, with details of how the performance, security and other challenges of
cloud computing are handled in the platform, is described.

In summary, this book provides an in-depth introduction to the various cloud
platforms and technologies today. In addition to describing the developer tools,
platforms and APIs for cloud applications, it emphasizes and compares the con-
cepts and technologies behind the platforms, and provides complex examples of
their usage as invited content from experts in cloud platforms. This book prepares
developers and IT professionals to become experts in cloud technologies, move
their computing solutions to the cloud and also explore potential future research
topics. It may be kindly noted that the APIs and functionality described in this
book are as per the versions available at the time of the writing of this book.
Readers are requested to refer to the latest product documentation for accurate
information. Finally, since this area is evolving rapidly, we plan to continuously
review the latest cloud computing technologies and platforms on our companion
website http://www.movingtocloudbook.com.

xxiv Preface

http://www.movingtocloudbook.com

STRUCTURE OF THE BOOK
Chapter 1 of the book is the introduction and provides a high-level overview of
cloud computing. We start with the evolution of cloud computing from Web 1.0 to
Web 2.0, and discuss its evolution in the future. Next, we discuss various cloud com-
puting models (IaaS, PaaS, and SaaS) and the cloud deployment models (public, pri-
vate, community and hybrid) together with the pros and cons of each model. Finally,
the economics of cloud computing and possible cost savings are described.

Chapters 2–4 describe the three cloud service models (Iaas, PaaS, and SaaS)
in detail – from a developer and technologist stand point. The platform models
are explained using popular cloud platforms as case studies (for example, Amazon
for IaaS and Windows Azure for PaaS) through sample programs, as well as an
overview of the underlying technology. While describing program development,
the book tries to follow a standard pattern. First, a simple Hello World program
that allows users to get started is described. This is followed by a more complex
example that illustrates commonly used features of the major APIs of the plat-
form. The complex example also introduces the concepts underlying the platform
(for example, MapReduce in Hadoop). These chapters will provide programmers
interested in developing cloud applications a good understanding of the features
and differences between the various existing cloud platforms. In addition, profes-
sionals who are interested in the technology behind cloud computing will under-
stand key platform features that are needed to motivate a discussion of the
technology and evaluate the suitability of a platform for their specific use case.

Chapter 2 describes three important IaaS platforms – Amazon, HP CloudSystem
Matrix, and a research prototype called Cells-as-a-Service. The first section of the
chapter describes the Amazon storage services – S3, SimpleDB, and Relational
Database Service with GUI and programming examples. The chapter also describes
how to upload large files and multi-part uploads. The next section describes
Amazon’s EC2 cloud service. This contains descriptions of how to administer and
use these services through the Web GUI, and also a code example of how to set
up a document portal in EC2 using a running example called Pustak Portal (details
of which are described towards the end of this Preface). Methods are presented for
automatically scaling up and down the service using both Amazon Beanstalk as
well as custom code (when Beanstalk is not suitable). The next sections of the
chapter describe HP CloudSystem Matrix, and Cells-as-a-Service, a research proto-
type developed by HP Labs. Here again, after describing the basic features of the
offering, the section describes how to set up the document portal in our running
example (Pustak Portal). Methods for autoscaling up or autoscaling down the portal
are described.

Chapter 3 describes some important PaaS cloud platforms – Windows Azure,
Google AppEngine, Apache Hadoop, IBM PureXML, and mashups. The Windows
Azure section first describes a simple “Hello World” program that illustrates the basic
concepts of Web and Worker roles, and shows how to test and deploy programs

Preface xxv

under Azure. Subsequently, the architecture of the Azure platform, together with its
programming model, storage services such as SQL Azure, as well as other services
such as security are described. These are illustrated with the running example of
implementing Pustak Portal. In the Google App Engine section, the process of devel-
oping and deploying programs is described, together with use of the Google App
Engine storage services and memory caching. Next IBM PureXML, which is a cloud
service that exposes both a relational as well as XML database interface, is discussed.
Examples of how to store data for a portal such as Pustak Portal are described. The
next section describes Apache Hadoop, including examples of MapReduce pro-
grams, and how Hadoop Distributed File System can be used to provide scalable
storage. The final section describes mashups, a technology which allows easy
development of applications that merge information from multiple web sites.
Yahoo! Pipes in particular is described with an example that includes the use of
Yahoo! Query Language, an SQL-like language for mashups.

Chapter 4 describes Salesforce.com, social computing, and Google Docs.
These are example services under the Software-as-a-Service (SaaS) model. As can
be seen, SaaS embraces a very wide diversity of applications, and the three popu-
lar applications selected above are intended to be representative. Salesforce.com is
an example of an enterprise SaaS application. As described previously, the Sales-
force.com section contains a detailed description of functionality for support repre-
sentatives. Subsequently the section presents a high-level architecture and
functionality of Force.com, the platform upon which Salesforce.com is built. The
architecture is illustrated by describing how to write programs to extend the Sales-
force.com functionality for the requirements of sales and marketing employees of
a publisher like Pustak Portal. The next section describes Social Computing, a
development that we argue is central to cloud computing. After defining social
computing, and social networks, the section describes the features of Facebook.
The description includes how enterprises are using Facebook for marketing. It
also describes the various social computing APIs that Facebook provides, such as
the Open Graph API, that allow developers to develop enterprise applications that
leverage the social networking information in Facebook. Equivalent functions in
Picasa, Twitter, and the Open Social Platform, are also described, together with
privacy and security issues. The last section is on Google Docs, a typical consu-
mer application that also has programming APIs. Subsequently, an example of
how to develop a portal like Pustak Portal that uses Google Docs as a backend
for storage of books is described.

Chapter 5 is meant to specifically aid application developers. It describes the
novel design and programming paradigms that an application developer should be
aware of in order to create new cloud components/applications. The first section
on scaling storage describes database sharding and other partitioning techniques,
as well as NoSQL stores such as HBase, Cassandra, and MongoDB. The second
section takes a deeper look at the novel MapReduce paradigm, including some
theoretical background and solutions to most common sub-problems. The final
section discusses client-side aspects of the cloud applications, which are

xxvi Preface

complementary to server-side techniques, and which also allow creation of com-
pelling rich client applications.

Chapters 6–9 provide an in-depth description of the technology behind cloud
computing and ways to address the key technical challenges. Chapter 6 describes
the overall technology behind cloud computing platforms, detailing multiple
alternative approaches to provide compute and storage scalability, availability and
multi-tenancy. It aims at enabling developers and professionals to understand the
technology behind the different platform features and enable effective use of the
APIs. The compute scalability section describes how this is achieved in platforms
such as OpenNebula and Eucalyptus. In the storage scalability section, the CAP
theorem and weak consistency in distributed systems, together with how these are
overcome in HBase, Cassandra and MongoDB, are discussed. The section on
multi-tenancy describes the general technology and describes the implementation
of Salesforce.com. Chapter 7 of the book focuses on security, which, as has been
noted earlier, is one of the key concerns for the deployment of cloud computing.
This is an abridged version of Securing the Cloud published by Syngress.
Chapter 8 describes manageability issues unique to the cloud because of the scale
and degree of automation found in clouds. Chapter 9 focuses on data center
technologies important in cloud computing, such as virtualization.

Cloud computing is an evolution of several related technologies aiming at large
scale computing. Chapter 9 of the book is aimed at providing a good understanding
of such technologies, e.g., virtualization, MapReduce architecture, etc. The chapter
gives an overview of those technologies, particularly relating cloud computing to
distributed computing and grid computing. It also describes some common techni-
ques used for data center optimization in general.

Finally, Chapter 10 describes the future outlook of cloud computing, detailing
important standardization efforts and available benchmarks. First, emerging cloud
standards from DMTF, NIST, IEEE, OGF and other standards bodies are dis-
cussed, followed by a look at some popular cloud benchmarks such as Cloud-
Stone, YCSB, CloudCMP and so on. The second part of this chapter lays out
some future trends and opportunities. Being a developer centric book, the future
outlook cloud applications being developed by end users without any program-
ming is narrated with a research project from HP Labs around the concept of
Tasklets. Another research project from HP Labs, OpenCirrus, which addresses
the energy and sustainability aspects of Cloud Computing and also provides a
research testbed for any future research to be done, is elaborated. Finally, the
chapter lists some of the open research issues that are yet to be addressed in
cloud computing, hoping to motivate researchers to further move the state of the
art of cloud technologies.

A Running Example: Pustak Portal
Pustak Portal is actually a common running example that is used by many
sections of the book. We believe use of such a running example will enable the

Preface xxvii

reader to compare and contrast the functionality provided by different platforms and
assess their suitability. The functionality of Pustak Portal has been chosen so that it
can be used to highlight different APIs, and simple as well as advanced features of
a cloud platform. Pustak Portal is somewhat like a combination of Google Docs,
Flickr and Snapfish labs. Consumers can use the document services hosted by this
portal to store and restore their selected documents, perform various image-proces-
sing functions provided by the portal (like document cleanup, image conversion,
template extraction, and so on). The portal provider (owner of Pustak), on the other
hand, uses the IaaS and PaaS features of the cloud platforms to scale to the huge
number of users manipulating their documents on the cloud. The document manipu-
lation services are compute and storage hungry. The portal provider is also inter-
ested in monitoring the usage of the portal and ensuring maximum availability and
scalability of the portal. Different client views of the document services portal will
be provided using client-side technologies.

Acknowledgments
This book would not have been possible without the help of a large number of
people. We would like to thank the developmental book editor Heather Scherer,
project manager Anne McGee and the technical editor David Deily, for their
many helpful comments and suggestions which greatly improved the quality of
the book. We are grateful to editor, Denise Penrose, for her immense help on
structuring the book.

Many sections of this book have been contributed by experts in their respective
fields. Thanks to our friends, Badrinath Ramamurthy, Dejan Milojicic, Devaraj Das,
Dibyendu Das, Gopal R. Srinivasa, Nigel Cook, Prakash S. Raghavendra, Praphul
Chandra and Vanish Talwar for their expert contribution which has made the book
more authentic and useful to a larger audience. We would like to thank Hitesh Bosa-
miya and Thara S for their code examples on Google Docs, Google AppEngine and
Salesforce.com. We are thankful to Sharat Visweswara from Amazon Inc. for his
insights into Amazon Web Services and Satish Kumar Mopur for his inputs on
storage virtualization. We are grateful to M. Chelliah from Yahoo!, M. Kishore
Kumar, and Mohan Parthasarathy from HP for their valuable inputs to the content of
the book. We are indebted to Dan Osecky, Suresh Shyamsundar, Sunil Subbakrishna,
and Shylaja Suresh for their help in reviewing various sections of the book. We
thank our HP management Prith Banerjee, Sudhir Dixit, and Subramanya Mudigere
for their encouragement and support in enabling us to complete this endeavor.
Finally, our heartfelt thanks to our families for their patience and support for enduring
our long nights out and time away from them.

xxviii Preface

CHAPTER

1Introduction

INFORMATION IN THIS CHAPTER

• Where Are We Today?

• The Future Evolution

• What Is Cloud Computing?

• Cloud Deployment Models

• Business Drivers for Cloud Computing

• Introduction to Cloud Technologies

INTRODUCTION

Cloud Computing is one of the major technologies predicted to revolutionize the
future of computing. The model of delivering IT as a service has several advantages.
It enables current businesses to dynamically adapt their computing infrastructure to
meet the rapidly changing requirements of the environment. Perhaps more impor-
tantly, it greatly reduces the complexities of IT management, enabling more pervasive
use of IT. Further, it is an attractive option for small and medium enterprises to
reduce upfront investments, enabling them to use sophisticated business intelligence
applications that only large enterprises could previously afford. Cloud-hosted services
also offer interesting reuse opportunities and design challenges for application develo-
pers and platform providers. Cloud computing has, therefore, created considerable
excitement among technologists in general.

This chapter provides a general overview of Cloud Computing, and the technolo-
gical and business factors that have given rise to its evolution. It takes a bird’s-eye
view of the sweeping changes that cloud computing is bringing about. Is cloud com-
puting merely a cost-saving measure for enterprise IT? Are sites like Facebook the tip
of the iceberg in terms of a fundamental change in the way of doing business? If so,
does enterprise IT have to respond to this change, or take the risk of being left
behind? By surveying the cloud computing landscape at a high level, it will be easy
to see how the various components of cloud technology fit together. It will also be
possible to put the technology in the context of the business drivers of cloud
computing.

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00001-9
© 2012 Elsevier, Inc. All rights reserved.

1

http://dx.doi.org/10.1016/B978-1-59749-725-1.00001-9

WHERE ARE WE TODAY?
Computing today is poised at a major point of inflection, similar to those in
earlier technological revolutions. A classic example of an earlier inflection is the
anecdote that is described in The Big Switch: Rewiring the World, from Edison to
Google [1]. In a small town in New York called Troy, an entrepreneur named
Henry Burden set up a factory to manufacture horseshoes. Troy was strategically
located at the junction of the Hudson River and the Erie Canal. Due to its loca-
tion, horseshoes manufactured at Troy could be shipped all over the United States.
By making horseshoes in a factory near water, Mr. Burden was able to transform
an industry that was dominated by local craftsmen across the US. However, the
key technology that allowed him to carry out this transformation had nothing to
do with horses. It was the waterwheel he built in order to generate electricity.
Sixty feet tall, and weighing 250 tons, it generated the electricity needed to power
his horseshoe factory.

Burden stood at the mid-point of a transformation that has been called the
Second Industrial Revolution, made possible by the invention of electric
power. The origins of this revolution can be traced to the invention of the first
battery by the Italian physicist Alessandro Volta in 1800 at the University of
Pavia. The revolution continued through 1882 with the operation of the first
steam-powered electric power station at Holborn Viaduct in London and even-
tually to the first half of the twentieth century, when electricity became ubiqui-
tous and available through a socket in the wall. Henry Burden was one of the
many figures who drove this transformation by his usage of electric power,
creating demand for electricity that eventually led to electricity being trans-
formed from an obscure scientific curiosity to something that is omnipresent
and taken for granted in modern life. Perhaps Mr. Burden could not have
grasped the magnitude of changes that plentiful electric power would bring
about.

By analogy, we may be poised at the midpoint of another transformation –
now around computing power – at the point where computing power has freed
itself from the confines of industrial enterprises and research institutions, but just
before cheap and massive computing resources are ubiquitous. In order to grasp
the opportunities offered by cloud computing, it is important to ask which direc-
tion are we moving in, and what a future in which massive computing resources
are as freely available as electricity may look like.

AWAKE! for Morning in the Bowl of Night
Has flung the Stone that puts the Stars to Flight:
…
The Bird of Time has but a little way
To fly – and Lo! the Bird is on the Wing.

The Rubaiyat of Omar Khayyam,
Translated into English in 1859, by Edward FitzGerald

2 CHAPTER 1 Introduction

Evolution of the Web
To see the evolution of computing in the future, it is useful to look at the history. The
first wave of Internet-based computing, sometimes called Web 1.0, arrived in the
1990s. In the typical interaction between a user and a web site, the web site would
display some information, and the user could click on the hyperlinks to get additional
information. Information flow was thus strictly one-way, from institutions that
maintained web sites to users. Therefore, the model of Web 1.0 was that of a gigantic
library, with Google and other search engines being the library catalog. However,
even with this modest change, enterprises (and enterprise IT) had to respond by
putting up their own web sites and publishing content that projected the image of the
enterprise effectively on the Web (Figure 1.1). Not doing so would have been
analogous to not advertising when competitors were advertising heavily.

Web 2.0 and Social Networking
The second wave of Internet computing developed in the early 2000s, when
applications that allowed users to upload information to the Web became popular.

FIGURE 1.1

Web 1.0: Information access.

Where Are We Today? 3

This seemingly small change has been sufficient to bring about a new class of
applications due to the rapid growth of user-generated content, social networking
and other associated algorithms that exploited crowd knowledge. This new genera-
tion Internet usage is called the Web 2.0 [2] and is depicted in Figure 1.2. If Web
1.0 looked like a massive library, Web 2.0, with social networking, is more like a
virtual world which in many ways looks like a replica of the physical world
(Figure 1.2). Here users are not just login ids, but virtual identities (or personas)
with not only a lot of information about themselves (photographs, interest profile,
the items they search for on the Web), but also their friends and other users they
are linked to as in a social world. Furthermore, the Web is now not read-only;
users are able to write back to the Web with their reviews, tags, ratings, annota-
tions and even create their own blogs. Again, businesses and business IT have to
respond to this new environment not only by leveraging the new technology for
cost-effectiveness but also by using the new features it makes possible.

As of this writing, Facebook has a membership of 750 million people, and that
makes 10% of the people in the world [3]! Apart from the ability to keep in touch
with friends, Facebook has been a catalyst for the formation of virtual communities.

FIGURE 1.2

Web 2.0: Digital reality: social networking.

4 CHAPTER 1 Introduction

A very visible example of this was the role Facebook played in catalyzing the 2011
Egyptian revolution. A key moment in the revolution was the January 25th protest
in Cairo’s Tahrir Square, which was organized using Facebook. This led to the lea-
der of the revolution publicly thanking Facebook [4, 5] for the role it played in
enabling the revolution. Another effective example of the use of social networking
was the election campaign of US president Obama, who built a network of 2 mil-
lion supporters on MySpace, 6.5 million supporters on Facebook, and 1.7 million
supporters on Twitter [6].

Social networking technology has the potential to make major changes in the
way businesses relate to customers. A simple example is the “Like” button that
Facebook introduced on web pages. By pressing this button for a product, a Face-
book member can indicate their preference for the advertised product. This fact is
immediately made known to the friends of the member, and put up on the Face-
book page of the user as well as his friends. This has a tremendous impact on the
buying behavior, as it is a recommendation of a product by a trusted friend! Also,
by visiting “facebook/insights”, it is possible to analyze the demographics of the
Facebook members who clicked the button. This can directly show the profile of
the users using the said product! Essentially, since user identities and relationships
are online, they can now be leveraged in various ways by businesses as well.

Information Explosion
Giving users the ability to upload content to the Web has led to an explosion of
information. Studies have consistently shown that the amount of digital information
in the world is doubling every 18 months [7]. Much information that would earlier
have been stored in physical form (e.g., photographs) is uploaded to the Web for
instantaneous sharing. In fact, in many cases, the first reports of important news are
video clips taken by bystanders with mobile phones and uploaded to the Web. The
importance of this information has led to growing attempts at Internet censorship
by governments that fear that unrestricted access to information could spark civil
unrest and lead to the overthrow of the governments [8, 9]. Business can mine this
subjective information, for example, by sentiment analysis, to throw some insights
into the overall opinion of the public towards a specific topic.

Further, entirely new kinds of applications may be possible through combining
the information on the Web. Text mining of public information was used by Unilever
to analyze patents filed by a competitor and deduce that the competitor was attempt-
ing to discover a pesticide for use against a pest found only in Brazil [10]. IBM was
similarly able to analyze news abstracts and detect that a competitor was showing
strong interest in the outsourcing business [10].

Another example is the food safety recall process implemented by HP together
with GS1 Canada, a supply chain organization [11]. By tracing the lifecycle of a food
product from its manufacture to its purchase, the food safety recall process is able to
advise individual consumers that the product they have purchased is not safe, and
that stores will refund the amount spent on purchase. This is an example of how busi-
nesses can reach out to individual consumers whom they do not interact with directly.

Where Are We Today? 5

Mobile Web
Another major change the world has seen recently is the rapid growth in the
number of mobile devices. Reports say that mobile broadband users have already
surpassed fixed broadband users [12]. Due to mobile Internet access, information
on the Web is accessible from anywhere, anytime, and on any device, making the
Web a part of daily life. For example, many users routinely use Google maps to
find directions when in an unknown location. Such content on the Web also
enables one to develop location-based services, and augmented-reality applica-
tions. For example, for a traveler, a mobile application that senses the direction
the user is facing, and displays information about the monument in front of him,
is very compelling. Current mobile devices are computationally powerful and pro-
vide rich user experiences using touch, accelerometer, and other sensors available
on the device as well. Use of a cloud-hosted app store is becoming almost a defacto
feature of every mobile device or platform. Google Android Market, Nokia Ovi
Store, Blackberry App World, Apple App Store are examples of the same. Mobile
vendors are also providing cloud services (such as iCloud and SkyDrive) to host app
data by which application developers can enable a seamless application experience
on multiple personal devices of the user.

THE FUTURE EVOLUTION
Extrapolation of the trends mentioned previously could lead to ideas about the
possible future evolution of the Web, aka the Cloud. The Cloud will continue
to be a huge information source, with the amount of information growing ever
more comprehensive. There is also going to be greater storage of personal data
and profiles, together with more immersive interactions that bring the digital
world closer to the real world. Mobility that makes the Web available everywhere
is only going to intensify. Cloud platforms have already made it possible to har-
ness large amounts of computing power to analyze large amounts of data. There-
fore, the world is going to see more and more sophisticated applications that can
analyze the data stored in the cloud in smarter ways. These new applications will
be accessible on multiple heterogeneous devices, including mobile devices. The
simple universal client application, the web browser, will also become more intel-
ligent and provide a rich interactive user experience despite network latencies.

A new wave of applications that provide value to consumer and businesses
alike are already evolving. Analytics and business intelligence are becoming more
widespread to enable businesses to better understand their customers and persona-
lize their interactions. A recent report states that by use of face recognition soft-
ware to analyze photos, one can discover the name, birthday, and other personal
information about people from Facebook [13]. This technology can be used, for
example by grocery stores, to make special birthday offers to people. A study by
the Cheshire Constabulary estimated that a typical Londoner is photographed by
CCTV cameras on the average of 68 times per day [14]. There are huge amounts

6 CHAPTER 1 Introduction

of customer data that can be analyzed to derive great insights into the buying
behavior, buying pattern and even methods to counteract competitors. Businesses
can use the location of people, together with personal information, to better serve
customers, as certain mobile devices keep detailed logs of the location of their
users [15]. Due to all these reasons and more, the next generation Web, Web 3.0,
has been humorously called Cyberspace looks at You, as illustrated in Figure 1.3.

The previous discussion shows that privacy issues will become important to
address going forward. Steve Rambam has described how, using just the email
address and name of a volunteer, he was able to track 500 pages of data about the
volunteer in 4 hours [16]. The data collected included the places the volunteer had
lived, the cars he had driven, and he even was able to discover that somebody had
been illegally using the volunteer’s Social Security number for the last twenty
years! In Google CEO Schmidt: No Anonymity Is the Future of Web [17], a senior
executive at Google predicted that governments were opposed to anonymity, and
therefore Web privacy is impossible. However, there are also some who believe
privacy concerns are exaggerated [18], and the benefits from making personal
information available far outweigh the risks.

FIGURE 1.3

Web 3.0: Cyberspace looks at You.

The Future Evolution 7

An additional way businesses can leverage cloud computing is through the
wisdom of crowds for better decision making. Researchers [19] have shown that
by aggregating the beliefs of individual members, crowds could make better
decisions than any individual member. The Hollywood Stock Exchange (HSX) is
an online game that is a good example of crowd wisdom. HSX participants are
allowed to spend up to 2 million dollars buying and selling stock in upcoming
movies [20]. The final value in the Hollywood Stock Exchange is a very good
predictor of the opening revenue of the movie, and the change in value of its
stock a good indication of the revenue in subsequent weeks.

Finally, as noted earlier, the digital universe today is a replica of the physical
universe. In the future, more realistic and immersive 3-D user interfaces could
lead to a complete change in the way users interact with computers and with each
other.

All these applications suggest that computing needs to be looked at as a much
higher level abstraction. Application developers should not be burdened by the
mundane tasks of ensuring that a specific server is up and running. They should not
be bothered about whether the disk currently allotted to them is going to overflow.
They should not be worrying about which operating system (OS) their application
should support or how to actually package and distribute the application to their
consumer. The focus should be on solving the much bigger problems. The compute
infrastructure, platform, libraries and application deployment should all be auto-
mated and abstracted. This is where Cloud Computing plays a major role.

WHAT IS CLOUD COMPUTING?
Cloud computing is basically delivering computing at the Internet scale. Compute,
storage, networking infrastructure as well as development and deployment
platforms are made available on-demand within minutes. Sophisticated futuristic
applications such as those described in the earlier sections are made possible by the
abstracted, auto-scaling compute platform provided by cloud computing. A formal
definition follows.

The US National Institute of Standards (NIST) has come up with a list of
widely accepted definitions of cloud computing terminologies and documented it
in the NIST technical draft [21]. As per NIST, cloud computing is described as
follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction.

To further clarify the definition, NIST specifies the following five essential
characteristics that a cloud computing infrastructure must have.

8 CHAPTER 1 Introduction

On demand self-service: The compute, storage or platform resources needed by
the user of a cloud platform are self-provisioned or auto-provisioned with minimal
configuration. As detailed in Chapter 2, it is possible to log on to Amazon Elastic
Compute Cloud (a popular cloud platform) and obtain resources, such as virtual ser-
vers or virtual storage, within minutes. To do this, it is simply necessary to register
with Amazon to get a user account. No interaction with Amazon’s service staff is
needed either for obtaining an account or for obtaining virtual resources. This is in
contrast to traditional in-house IT systems and processes, which typically require
interaction with an IT administrator, a long approval workflow and usually result in a
long time interval to provision any new resource.

Broad network access: Ubiquitous access to cloud applications from desktops,
laptops to mobile devices is critical to the success of a Cloud platform. When com-
puting moves to the cloud, the client applications can be very light weight, to the
extent of just being a web browser that sends an HTTP request and receives the
result. This will in turn make the client devices heavily dependent upon the cloud
for their normal functioning. Thus, connectivity is a critical requirement for effec-
tive use of a Cloud Application. For example, cloud services like Amazon, Google,
and Yahoo! are available world-wide via the Internet. They are also accessible by a
wide variety of devices, such as mobile phones, iPads, and PCs.

Resource pooling: Cloud services can support millions of concurrent users; for
example, Skype supports 27 million concurrent users [22], while Facebook supported
7 million simultaneous users in 2009 [23]. Clearly, it is impossible to support this
number of users if each user needs dedicated hardware. Therefore, cloud services
need to share resources between users and clients in order to reduce costs.

Rapid elasticity: A cloud platform should be able to rapidly increase or decrease
computing resources as needed. In a cloud platform called Amazon EC2, it is possi-
ble to specify a minimum number as well as a maximum number of virtual servers to
be allocated. The actual number will vary depending upon the load. Further, the time
taken to provision a new server is very small, on the order of minutes. This also
increases the speed with which a new infrastructure can be deployed.

Measured service: One of the compelling business use cases for cloud computing
is the ability to “pay as you go,” where the consumer pays only for the resources that
are actually used by his applications. Commercial cloud services, like Salesforce.
com, measure resource usage by customers, and charge proportionally to the resource
usage.

CLOUD DEPLOYMENT MODELS
In addition to proposing a definition of cloud computing, NIST has defined four
deployment models for clouds, namely Private Cloud, Public Cloud, Community
Cloud and Hybrid Cloud. A Private cloud is a cloud computing infrastructure that is
built for a single enterprise. It is the next step in the evolution of a corporate data cen-
ter of today where the infrastructure is shared within the enterprise. Community

Cloud Deployment Models 9

cloud is a cloud infrastructure shared by a community of multiple organizations that
generally have a common purpose. An example of a community cloud is OpenCirrus,
which is a cloud computing research testbed intended to be used by universities and
research institutions. Public cloud is a cloud infrastructure owned by a cloud service
provider that provides cloud services to the public for commercial purposes. Hybrid
clouds are mixtures of these different deployments. For example, an enterprise may
rent storage in a public cloud for handling peak demand. The combination of the
enterprise’s private cloud and the rented storage then is a hybrid cloud.

Private vs. Public Clouds
Enterprise IT centers may either choose to use a private cloud deployment or
move their data and processing to a public cloud deployment. It is worth noting
that there are some significant differences between the two. First, the private
cloud model utilizes the in-house infrastructure to host the different cloud ser-
vices. The cloud user here typically owns the infrastructure. The infrastructure
for the public cloud on the other hand, is owned by the cloud vendor. The
cloud user pays the cloud vendor for using the infrastructure. On the positive side,
the public cloud is much more amenable to provide elasticity and scaling-on-demand
since the resources are shared among multiple users. Any over-provisioned
resources in the public cloud are well utilized as they can now be shared among
multiple users.

Additionally, a public cloud deployment introduces a third party in any legal
proceedings of the enterprise. Consider the scenario where the enterprise has
decided to utilize a public cloud with a fictitious company called NewCloud. In
case of any litigation, emails and other electronic documents may be needed as
evidence, and the relevant court will send orders to the cloud service provider
(e.g., NewCloud) to produce the necessary emails and documents. Thus, use of
NewCloud’s services would mean that NewCloud becomes part of any lawsuit
involving data stored in NewCloud. This issue is discussed in more detail in
Chapter 7, titled Designing Cloud Security.

Another consideration is the network bandwidth constraints and cost. In case
the decision is made to move some of the IT infrastructure to a public cloud [24],
disruptions in the network connectivity between the client and the cloud service
will affect the availability of cloud-hosted applications. On a low bandwidth net-
work, the user experience for an interactive application may also get affected.
Further, implications on the cost of network usage also need to be considered.

There are additional factors that the cloud user need to use to select between
a public or private cloud. A simplified example may make it intuitively clear
that the amount of time over which the storage is to be deployed is an impor-
tant factor. Suppose it is desired to buy 10TB of disk storage, and it is possible
either to buy a new storage box for a private cloud, or obtain it through a cloud
service provided by NewCloud. Suppose the lifetime of the storage is 5 years,
and 10TB of storage costs $X. Clearly NewCloud would have to charge (in a

10 CHAPTER 1 Introduction

simplified pricing model) at least $X/5 per year for this storage in order to
recover their cost. In practice, NewCloud would have to charge more, in order
to make a profit, and to cover idle periods when this storage is not rented out
to anybody. Thus, if the storage is to be used only temporarily for 1 year, it
may be cost-effective to rent the storage from NewCloud, as the business would
then only have to pay on the order of $X/5. On the other hand, if the storage is
intended to be used for a longer term, then it may be more cost-effective to buy
the storage and use it as a private cloud. Thus, it can be seen that one of the
factors dictating the use of a private cloud or a public cloud for storage is how
long the storage is intended to be used.

Of course, cost may not be the only consideration in evaluating public and private
clouds. Some public clouds providing application services, such as Salesforce.com (a
popular CRM cloud service) offer unique features that customers would consider in
comparison to competing non-cloud applications. Other public clouds offer infra-
structure services and enable an enterprise to entirely outsource the IT infrastructure,
and to offload complexities of capacity planning, procurement, and management of
data centers as detailed in the next section. In general, since private and public clouds
have different characteristics, different deployment models and even different busi-
ness drivers, the best solution for an enterprise may be a hybrid of the two.

A detailed comparison and economic model of using public cloud versus
private cloud for database workloads is presented by Tak et al. [25]. The authors
consider the intensity of the workload (small, medium, or large workloads),
burstiness, as well as the growth rate of the workload in their evaluation. The
choice may also depend upon the costs. So, they consider a large number of cost
factors, including reasonable estimates for hardware cost, software cost, salaries,
taxes, and electricity. The key finding is that private clouds are cost-effective for
medium to large workloads, and public clouds are suitable for small workloads.
Other findings are that vertical hybrid models (where parts of the application are
in a private cloud and part in a public cloud) tend to be expensive due to the high
cost of data transfer. However, horizontal hybrid models, where the entire applica-
tion is replicated in the public cloud and usage of the private cloud is for normal
workloads, while the public cloud is used for demand peaks, can be cost-effective.

An illustrative example of the kind of analysis that needs to be done in order
to decide between a private and public cloud deployment is shown in Table 1.1.
The numbers in the table are intended to be hypothetical and illustrative. Before
deciding on whether a public or private cloud is preferable in a particular instance,
it is necessary to work out a financial analysis similar to the one in Table 1.1. The
table compares the estimated costs for deployment of an application in both a
private and public cloud. The comparison is the total cost over a 3-year time
horizon, which is assumed to be the time span of interest. In the table, the soft-
ware licensing costs are assumed to increase due to increasing load. Public cloud
service costs are assumed to rise for the same reason. While cost of the infrastruc-
ture is one metric that can be used to decide between private and public cloud,
there are other business drivers that may impact the decision.

Cloud Deployment Models 11

BUSINESS DRIVERS FOR CLOUD COMPUTING
Unlike in a traditional IT purchase model, if using a cloud platform, a business
does not need a very high upfront capital investment in hardware. It is also diffi-
cult in general to estimate the full capacity of the hardware at the beginning of a
project, so people end up over-provisioning IT and buying more than what is
needed at the beginning. This again is not necessary in a cloud model, due to the
on-demand scaling that it enables. The enterprise can start with a small capacity
hardware from the cloud vendor and expand based on how business progresses.
Another disadvantage of owning a complex infrastructure is the maintenance
needed. From a business perspective, Cloud provides high availability and elimi-
nates need for an IT house in every company, which requires highly skilled
administrators.

A number of business surveys have been carried out to evaluate the bene-
fits of Cloud Computing. For example, the North Bridge survey [26] reveals
that the majority of businesses are still experimenting with the cloud (40%).
However, a significant minority does consider it ready even for mission criti-
cal applications (13%). Cloud computing is considered to have a number of
positive aspects. In the short term scalability, cost, agility, and innovation are
considered to be the major drivers. Agility and innovation refer to the ability
of enterprise IT departments to respond quickly to requests for new services.
Currently, IT departments have come to be regarded as too slow by users (due
to the complexity of enterprise software). Cloud computing, by increasing
manageability, increases the speed at which applications can be deployed,
either on public clouds, or in private clouds implemented by IT departments

Table 1.1 Hypothetical Cost of Public vs. Private Cloud

(in USD)

Private Cloud Public Cloud

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

Hardware 70,000 40,000 20,000
Setup
Costs

30,000 5,000

Software
(Licensing)

200,000 400,000 700,000

Labor
costs

200,000 200,000 200,000

Service
costs

300,000 600,000 1,000,000

WAN costs 15,000 30,000 56,000
Cost for
year

500,000 640,000 920,000 320,000 630,000 1,056,000

Total 2,060,000 2,006,000

12 CHAPTER 1 Introduction

for the enterprise. Additionally, it also reduces management complexity.
Scalability, which refers to the ease with which the size of the IT infrastruc-
ture can be increased to accommodate increased workload, is another major
factor. Finally, cloud computing (private or public clouds) have the potential
to reduce IT costs due to automated management.

Well, what are the downsides of using the public clouds? Three major
factors were quoted by respondents as being inhibiting factors. The first is
security. Verification of the security of data arises as a concern in public
clouds, since the data is not being stored by the enterprise. Cloud service provi-
ders have attempted to address this problem by acquiring third-party certifica-
tion. Compliance is another issue, and refers to the question of whether the
cloud security provider is complying with the security rules relating to data
storage. An example is health-related data, which requires the appointment of a
compliance administrator who will be accountable for the security of the data.
Cloud service providers have attempted to address these issues through certifica-
tion as well. These issues are discussed in Chapter 7. The third major inhibitor
cited by businesses was interoperability and vendor lock-in. This refers to the
fact that once a particular public cloud has been chosen, it would not be easy to
migrate away, since the software and operating procedures would all have been
tailored for that particular cloud. This could give the cloud service provider
undue leverage in negotiations with the business. From a financial point of
view, “pay per use” spending on IT infrastructure can perhaps be considered as
an expense or liability that will be difficult to reduce, since reduction could
impact operations. Hence, standardization of cloud service APIs becomes impor-
tant and current efforts towards the same are detailed in Chapter 10.

INTRODUCTION TO CLOUD TECHNOLOGIES
This section gives an overview of some technology aspects of cloud computing that
are detailed in the rest of the book. One of the best ways of learning about cloud
technologies is by understanding the three cloud service models or service types for
any cloud platform. These are Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS) which are described next.

The three cloud service types defined by NIST, IaaS, PaaS and SaaS, focus on
a specific layer in a computer’s runtime stack – the hardware, the system software
(or platform) and the application, respectively.

Figure 1.4 illustrates the three cloud service models and their relationships. At
the lowest layer is the hardware infrastructure on which the cloud system is built.
The cloud platform that enables this infrastructure to be delivered as a service is
the IaaS architecture. In the IaaS service model, the physical hardware (servers,
disks, and networks) is abstracted into virtual servers and virtual storage. These
virtual resources can be allocated on demand by the cloud users, and configured
into virtual systems on which any desired software can be installed. As a result,

Introduction to Cloud Technologies 13

this architecture has the greatest flexibility, but also the least application automa-
tion from the user’s viewpoint. Above this is the PaaS abstraction, which provides
a platform built on top of the abstracted hardware that can be used by developers
to create cloud applications. A user who logs in to a cloud service that offers
PaaS will have commands available that will allow them to allocate middleware
servers (e.g., a database of a certain size), configure and load data into the middle-
ware, and develop an application that runs on top of the middleware. Above this
is the SaaS abstraction, which provides the complete application (or solution) as a
service, enabling consumers to use the cloud without worrying about all the com-
plexities of hardware, OS or even application installation. For example, a user log-
ging in to an SaaS service would be able to use an email service without being
aware of the middleware and servers on which this email service is built. There-
fore, as shown in the figure, this architecture has the least flexibility and most
automation for the user.

While the features offered by the three, service types may be different, there is
a common set of technological challenges that all cloud architectures face. These

In
cr

ea
se

d
au

to
m

at
io

n

In
cr

ea
se

d
fle

xi
bi

lit
y

CRM
application

Web email

Apache
JBoss DB

DB
cluster Apache DB

IaaS

Hardware

SaaS

PaaS

FIGURE 1.4

Cloud service models.

14 CHAPTER 1 Introduction

include computation scaling, storage scaling, multi-tenancy, availability, and
security. It may be noted that in the previous discussion, the three different service
models have been shown as clearly layered upon each other. This is frequently the
case; for example, the Salesforce.com CRM SaaS is built upon the Force.com
PaaS. However, theoretically, this need not be true. It is possible to provide a
SaaS model using an over-provisioned data center, for example.

Infrastructure as a Service
The IaaS model is about providing compute and storage resources as a service.
According to NIST [21], IaaS is defined as follows:

The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is
able to deploy and run arbitrary software, which can include operating systems
and applications. The consumer does not manage or control the underlying
cloud infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components
(e.g., host firewalls).

The user of IaaS has single ownership of the hardware infrastructure allotted to
him (may be a virtual machine) and can use it as if it is his own machine on a
remote network and he has control over the operating system and software on it.
IaaS is illustrated in Figure 1.5. The IaaS provider has control over the actual
hardware and the cloud user can request allocation of virtual resources, which are
then allocated by the IaaS provider on the hardware (generally without any man-
ual intervention). The cloud user can manage the virtual resources as desired,
including installing any desired OS, software and applications. Therefore IaaS is
well suited for users who want complete control over the software stack that they

IaaS

OS, software and applications

Hardware

Allocation
managed by
IaaS provider

Controlled by
IaaS provider

Controlled
by user

Virtual
resources
allocated and
managed by
user

FIGURE 1.5

Infrastructure as a Service.

Introduction to Cloud Technologies 15

run; for example, the user may be using heterogeneous software platforms from
different vendors, and they may not like to switch to a PaaS platform where only
selected middleware is available. Well-known IaaS platforms include Amazon
EC2, Rackspace, and Rightscale. Additionally, traditional vendors such as HP,
IBM and Microsoft offer solutions that can be used to build private IaaS.

Platform as a Service
The PaaS model is to provide a system stack or platform for application deploy-
ment as a service. NIST defines PaaS as follows:

The capability provided to the consumer is to deploy onto the cloud infrastruc-
ture consumer-created or acquired applications created using programming
languages and tools supported by the provider. The consumer does not manage or
control the underlying cloud infrastructure including network, servers, operating
systems, or storage, but has control over the deployed applications and possibly
application hosting environment configurations.

Figure 1.6 shows a PaaS model diagramatically. The hardware, as well as any
mapping of hardware to virtual resources, such as virtual servers, is controlled by
the PaaS provider. Additionally, the PaaS provider supports selected middleware,
such as a database, web application server, etc. shown in the figure. The cloud user
can configure and build on top of this middleware, such as define a new database
table in a database. The PaaS provider maps this new table onto their cloud
infrastructure. Subsequently, the cloud user can manage the database as needed,
and develop applications on top of this database. PaaS platforms are well suited to
those cloud users who find that the middleware they are using matches the
middleware provided by one of the PaaS vendors. This enables them to focus on
the application. Windows Azure, Google App Engine, and Hadoop are some well-
known PaaS platforms. As in the case of IaaS, traditional vendors such as HP, IBM
and Microsoft offer solutions that can be used to build private PaaS.

Allocation
managed by
PaaS provider

Controlled by
PaaS provider

Applications

PaaS

Hardware, virtualization layers

Apache
JBoss DB

DB
cluster Apache DB

Controlled by
user

Middleware
allocated and
managed by
user

FIGURE 1.6

Platform as a Service.

16 CHAPTER 1 Introduction

Software as a Service
SaaS is about providing the complete application as a service. SaaS has been
defined by NIST as follows:

The capability provided to the consumer is to use the provider’s applications
running on a cloud infrastructure. The applications are accessible from various
client devices through a thin client interface such as a web browser (e.g.,
web-based email). The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, storage, or
even individual application capabilities, with the possible exception of limited
user-specific application configuration settings.

Any application that can be accessed using a web browser can be considered as
SaaS. These points are illustrated in Figure 1.7. The SaaS provider controls all the
layers apart from the application. Users who log in to the SaaS service can both use
the application as well as configure the application for their use. For example, users
can use Salesforce.com to store their customer data. They can also configure the
application, for example, requesting additional space for storage or adding addi-
tional fields to the customer data that is already being used. When configuration set-
tings are changed, the SaaS infrastructure performs any management tasks needed
(such as allocation of additional storage) to support the changed configuration.
SaaS platforms are targeted towards users who want to use the application without
any software installation (in fact, the motto of Salesforce.com, one of the prominent
SaaS vendors, is “No Software”). However, for advanced usage, some small
amount of programming or scripting may be necessary to customize the application
for usage by the business (for example, adding additional fields to customer data).
In fact, SaaS platforms like Salesforce.com allow many of these customizations to
be performed without programming, but by specifying business rules that are sim-
ple enough for non-programmers to implement. Prominent SaaS applications
include Salesforce.com for CRM, Google Docs for document sharing, and web
email systems like Gmail, Hotmail, and Yahoo! Mail. IT vendors such as HP and
IBM also sell systems that can be configured to set up SaaS in a private cloud;
SAP, for example, can be used as an SaaS offering inside an enterprise.

Allocation
managed by
SaaS provider

Controlled by
SaaS provider

SaaS

Hardware, virtualization, OS, middleware

Usage and
resources
managed by
user

CRM
application

Web
email

FIGURE 1.7

SaaS cloud model.

Introduction to Cloud Technologies 17

Technology Challenges
The technology challenges for cloud computing arise from the fact that the scale
of cloud computing is much, much larger than that of traditional computing envir-
onments – as it will be shared by many users, many applications and in fact many
enterprises! These challenges, therefore, impact all the three cloud service models
described earlier. The rest of the book highlights the methods used by different
cloud systems to overcome these challenges.

Figure 1.8 shows the traffic to the five most popular web sites. The continuously
dropping curve is the fraction of all Web requests that went to that web site while
the V-shaped curve is the response time of the web site. It can be seen that the top
web site – Facebook.com – accounts for about 7.5% of all Web traffic. In spite of
the high traffic, the response time – close to 2 seconds – is still better than average.
To support such high transaction rates with good response time, it must be possible
to scale both compute and storage resources very rapidly. Scalability of both com-
pute power and storage is therefore a major challenge for all three cloud models.
High scalability requires large-scale sharing of resources between users. As stated
earlier, Facebook supports 7 million concurrent users. New techniques for multi-
tenancy, or fine-grained sharing of resources, are needed for supporting such large
numbers of users. Security is a natural concern in such environments as well.

Additionally, in such large-scale environments, hardware failures and software
bugs can be expected to occur relatively frequently. The problem is complicated by
the fact that failures can trigger other failures, leading to an avalanche of failures that
can lead to significant outages. Such a failure avalanche occurred once in 2011 in
Amazon’s data center [28, 29, 30]. A networking failure triggered a re-mirroring
(making a replica or mirror) of data. However, the re-mirroring traffic interfered with

8 2.5

2

1.5

1

0.5

0

R
es

po
ns

e
tim

e

7

6

5

4

3

2

1

0

fac
eb

oo
k.c

om

go
og

le.
co

m

yo
utu

be
.co

m

ba
idu

.co
m

ya
ho

o.c
om

P
er

ce
nt

 p
ag

e
vi

ew
s Response time

% page views

FIGURE 1.8

Traffic statistics for popular web sites.
(Data Source: Alexa.com [27])

18 CHAPTER 1 Introduction

normal storage traffic, causing the system to believe that additional mirrors had failed.
This in turn triggered further re-mirroring traffic, which interfered with additional nor-
mal storage traffic, triggering still more re-mirroring (see Figure 1.9), bringing down
the whole system. Availability is therefore one of the major challenges affecting
clouds. Chapter 6 gives some approaches that can be used to address these chal-
lenges, but of course more research yet needs to be done to solve the issues
completely.

SUMMARY

This chapter has focused on many concepts that will be important in the rest of
the book. First, the NIST definition of cloud computing and the three cloud com-
puting models defined by NIST (Infrastructure as a Service or IaaS, Platform as a
Service or PaaS, Software as a Service or SaaS) have been described. Next, the
four major cloud deployment models – private cloud, public cloud, community
cloud, and hybrid cloud, were surveyed and described. This was followed by an
analysis of the economics of cloud computing and the business drivers. It was
pointed out that in order to quantify the benefits of cloud computing, detailed
financial analysis is needed. Finally, the chapter discussed the major technological
challenges faced in cloud computing – scalability of both computing and storage,
multi-tenancy, and availability. In the rest of the book, while discussing technology,
the focus will be on how different cloud solutions address these challenges, thereby
allowing readers to compare and contrast the different solutions on a technological
level.

Go ahead – enjoy the technology chapters now and demystify the cloud!

Mirrored disks Mirrored disks

A B C D E

G

F

Link to disk B fails
System decides to
mirror disk A on C

Re-mirroring load on C:
system thinks D failed

System decides to
mirror disk E on F

Re-mirroring load on F:
system thinks G failed

Cycle continues

Master
Data

FIGURE 1.9

An example showing avalanche of failures.

Summary 19

References
[1] Nicholas Carr, W W. The Big Switch: Rewiring the world, from edison to google. Norton

& Company, 2009. ISBN-13: 978-0393333947.
[2] O’Reilly T, What is web 2.0? Design patterns and business models for the next gen-

eration of software, September 2005. http://oreilly.com/web2/archive/what-is-web-20.
html 2005 [accessed 08.10.11].

[3] Facebook Now Has 750 Million Users. http://techcrunch.com/2011/06/23/facebook-
750-million-users/ [accessed 08.10.11].

[4] Egypt’s Facebook Revolution: Wael Ghonim Thanks The Social Network. http://www
.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html
[accessed 08.10.11].

[5] Egyptians protesting Tahrir Square Cairo. http://www.youtube.com/watch?
v=S8aXWT3fPyY [accessed 25.01.11].

[6] How Obama used social networking tools to win, INSEAD. http://knowledge.insead
.edu/contents/HowObamausedsocialnetworkingtowin090709.cfm; [accessed 10.07.09].

[7] The Diverse and Exploding Digital Universe, IDC. http://www.emc.com/collateral/
analyst-reports/diverse-exploding-digital-universe.pdf; 2008 [accessed 08.10.11].

[8] Internet Enemies, by Reporters sans Frontiers. http://www.rsf.org/IMG/pdf/Internet_
enemies_2009_2_.pdf; [accessed 12.03.09].

[9] Google sees growing struggle over web censorship. http://www.reuters.com/article/
2011/06/27/us-google-censorship-idUSTRE75Q4DT20110627 [accessed 08.10.11].

[10] Zanasi A. text mining and its applications to intelligence, CRM and knowledge man-
agement. WIT Press; 30 2007, p. 203.

[11] Gardner D. Cloud computing uniquely enables product and food recall processes across
supply chains. http://www.zdnet.com/blog/gardner/cloud-computing-uniquely-enables-
product-and-food-recall-processes-across-supply-chains/3163; [accessed 25.08.09].

[12] Mobile broadband subscribers overtake fixed broadband, Infonetics Research. http://
www.infonetics.com/pr/2011/Fixed-and-Mobile-Subscribers-Market-Highlights.asp
[accessed 08.10.11].

[13] Software that spills info by looking at your photo, Bangalore Mirror, 3 August 2011, p. 13.
[14] Gerrard G, Thompson R. Two million cameras in the UK, Cheshire Constabulary,

CCTV Image, Vol. 42. http://www.securitynewsdesk.com/wp-content/uploads/2011/
03/CCTV-Image-42-How-many-cameras-are-there-in-the-UK.pdf [accessed 08.10.11].

[15] J. R. Raphael, Apple vs. Android location tracking: Time for some truth, Computerworld.
http://blogs.computerworld.com/18190/apple_android_location_tracking; [accessed
25.04.11].

[16] Rambam S. Privacy Is Dead - Get Over It, 8th www.ToorCon.org Information Security
Conference, September 30, 2006, San Diego, California. http://video.google.com/
videoplay?docid=-383709537384528624 [accessed 08.10.11].

[17] Ms Smith, Google CEO Schmidt: No Anonymity Is The Future Of Web, Network World.
http://www.networkworld.com/community/blog/google-ceo-schmidt-no-anonymity-future-
web; 2010 [accessed 08.10.11].

[18] Pogue D. Don’t worry about who’s watching. Scientific American. http://www
.scientificamerican.com/article.cfm?id=dont-worry-about-whos-watching; [accessed
01.01.11].

[19] Suroweiki J, The Wisdom of Crowds, Anchor, 16 August 2005.

20 CHAPTER 1 Introduction

http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://techcrunch.com/2011/06/23/facebook-750-million-users/
http://techcrunch.com/2011/06/23/facebook-750-million-users/
http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html
http://www.huffingtonpost.com/2011/02/11/egypt-facebook-revolution-wael-ghonim_n_822078.html
http://www.youtube.com/watch?v=S8aXWT3fPyY
http://www.youtube.com/watch?v=S8aXWT3fPyY
http://knowledge.insead.edu/contents/HowObamausedsocialnetworkingtowin090709.cfm
http://knowledge.insead.edu/contents/HowObamausedsocialnetworkingtowin090709.cfm
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.rsf.org/IMG/pdf/Internet_enemies_2009_2_.pdf
http://www.rsf.org/IMG/pdf/Internet_enemies_2009_2_.pdf
http://www.reuters.com/article/2011/06/27/us-google-censorship-idUSTRE75Q4DT20110627
http://www.reuters.com/article/2011/06/27/us-google-censorship-idUSTRE75Q4DT20110627
http://www.zdnet.com/blog/gardner/cloud-computing-uniquely-enables-product-and-food-recall-processes-across-supply-chains/3163
http://www.zdnet.com/blog/gardner/cloud-computing-uniquely-enables-product-and-food-recall-processes-across-supply-chains/3163
http://www.infonetics.com/pr/2011/Fixed-and-Mobile-Subscribers-Market-Highlights.asp
http://www.infonetics.com/pr/2011/Fixed-and-Mobile-Subscribers-Market-Highlights.asp
http://www.securitynewsdesk.com/wp-content/uploads/2011/03/CCTV-Image-42-How-many-cameras-are-there-in-the-UK.pdf
http://www.securitynewsdesk.com/wp-content/uploads/2011/03/CCTV-Image-42-How-many-cameras-are-there-in-the-UK.pdf
http://blogs.computerworld.com/18190/apple_android_location_tracking
http://video.google.com/videoplay?docid=-383709537384528624
http://video.google.com/videoplay?docid=-383709537384528624
http://www.networkworld.com/community/blog/google-ceo-schmidt-no-anonymity-future-web
http://www.networkworld.com/community/blog/google-ceo-schmidt-no-anonymity-future-web
http://www.scientificamerican.com/article.cfm?id=dont-worry-about-whos-watching
http://www.scientificamerican.com/article.cfm?id=dont-worry-about-whos-watching

[20] What is HSX Anyway? http://www.hsx.com/help/ [accessed 08.10.11].
[21] The NIST Definition of Cloud Computing (Draft), Peter Mell, Timothy Grance, NIST.

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
[accessed 08.10.11].

[22] Skype hits new record of 27 million simultaneous users in wake of iOS video chat
release, Vlad Savov, Engadget. http://www.engadget.com/2011/01/11/skype-hits-new-
record-of-27-million-simultaneous-users-in-wake-o/ [accessed 08.10.11].

[23] Erlang at Facebook, Eugene Letuchy. http://www.erlang-factory.com/upload/presentations/
31/EugeneLetuchy-ErlangatFacebook.pdf; [accessed 30.04.09].

[24] Cloud storage will fail without WAN Acceleration, so FedEx to the rescue? Larry
Chaffin, 6 December 2010, Networking World. http://www.networkworld.com/
community/blog/cloud-storage-will-fail-without-wan-accelerat [accessed 06.12.11].

[25] Tak BC, Urgaonkar B, Sivasubramaniam A. To Move or Not to Move: The Economics
of Cloud Computing. The Pennsylvania State University, Hot Cloud’11: 3rd Usenix
Workshop on Hot Topics in Cloud Computing, June 2011, Portland, Oregon, http://
www.usenix.org/event/hotcloud11/tech/final_files/Tak.pdf [accessed 08.10.11].

[26] 2011 Future of Cloud Computing Survey Results, Michael Skok, North Bridge Ven-
ture Partners. http://futureofcloudcomputing.drupalgardens.com/media-gallery/detail/91/
286; [accessed 22.06.11].

[27] Alexa, The Web Information Company. http://alexa.com [accessed 08.10.11].
[28] Major Amazon Outage Ripples Across Web, April 21st, 2011 : Rich Miller, Data Center

Knowledge. http://www.datacenterknowledge.com/archives/2011/04/21/major-amazon-
outage-ripples-across-web/ [accessed 08.10.11].

[29] Kusnetzky D, Analyzing the Amazon Outage with Kosten Metreweli of Zeus, May
16, 2011, http://www.zdnet.com/blog/virtualization/analyzing-the-amazon-outage-with-
kosten-metreweli-of-zeus/3069 [accessed 16.05.11].

[30] Phil Wainewright, Seven lessons to learn from Amazon’s outage. http://www.zdnet
.com/blog/saas/seven-lessons-to-learn-from-amazons-outage/1296; [accessed 24.04.11].

References 21

http://www.hsx.com/help/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://www.engadget.com/2011/01/11/skype-hits-new-record-of-27-million-simultaneous-users-in-wake-o/
http://www.engadget.com/2011/01/11/skype-hits-new-record-of-27-million-simultaneous-users-in-wake-o/
http://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
http://www.erlang-factory.com/upload/presentations/31/EugeneLetuchy-ErlangatFacebook.pdf
http://www.networkworld.com/community/blog/cloud-storage-will-fail-without-wan-accelerat
http://www.networkworld.com/community/blog/cloud-storage-will-fail-without-wan-accelerat
http://www.usenix.org/event/hotcloud11/tech/final_files/Tak.pdf
http://www.usenix.org/event/hotcloud11/tech/final_files/Tak.pdf
http://futureofcloudcomputing.drupalgardens.com/media-gallery/detail/91/286
http://futureofcloudcomputing.drupalgardens.com/media-gallery/detail/91/286
http://alexa.com
http://www.datacenterknowledge.com/archives/2011/04/21/major-amazon-outage-ripples-across-web/
http://www.datacenterknowledge.com/archives/2011/04/21/major-amazon-outage-ripples-across-web/
http://www.zdnet.com/blog/virtualization/analyzing-the-amazon-outage-with-kosten-metreweli-of-zeus/3069
http://www.zdnet.com/blog/virtualization/analyzing-the-amazon-outage-with-kosten-metreweli-of-zeus/3069
http://www.zdnet.com/blog/saas/seven-lessons-to-learn-from-amazons-outage/1296
http://www.zdnet.com/blog/saas/seven-lessons-to-learn-from-amazons-outage/1296

This page intentionally left blank

CHAPTER

2Infrastructure as a Service

INFORMATION IN THIS CHAPTER:

• Storage as a Service: Amazon Storage Services

• Compute as a Service: Amazon Elastic Compute Cloud (EC2)

• HP CloudSystem Matrix

• Cells-as-a-Service

INTRODUCTION

This chapter describes an important cloud service model called “Infrastructure as
a Service” (IaaS), which enables computing and storage resources to be delivered as
a service. This is the first of the three cloud computing service models described in
the previous chapter. The other two models are studied in subsequent chapters. Under
the IaaS cloud computing model, cloud service providers make computing and
storage resources (such as servers and storage) available as a service. This offers
maximum flexibility for users to work with the cloud infrastructure, wherein exactly
how the virtual computing and storage resources are used is left to the cloud user.
For example, users will be able to load any operating system and other software they
need and execute most of the existing enterprise services without many changes.
However, the burden of maintaining the installed operating system and any middle-
ware continues to fall on the user/customer. Ensuring the availability of the applica-
tion is also the user’s job since IaaS vendors only provide virtual hardware resources.

The subsequent sections describe some popular IaaS platforms for storage as
a service and then compute as a service. First, the section Storage as a Service (some-
times abbreviated as StaaS) takes a detailed look at key Amazon Storage Services:
(a) Amazon Simple Storage Service (S3), which provides a highly reliable and
highly available object store over HTTP; (b) Amazon SimpleDB, a key-value store;
and (c) Amazon Relational Database Service (RDS), which provides a MySQL
instance in the cloud. The second part of the chapter describes compute aspects of
IaaS – i.e., enabling virtual computing over Cloud. Customers of these services will
typically reserve a virtual computer of a certain capacity, and load software that is
needed. There could also be features that allow these virtual computers to be net-
worked together, and also for the capacity of the virtual computing to be increased or
decreased according to demand. Three diverse instances of Compute as a Service

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00002-0
© 2012 Elsevier, Inc. All rights reserved.

23

http://dx.doi.org/10.1016/B978-1-59749-725-1.00002-0

are described in this chapter, namely Amazon Elastic Compute Cloud (EC2), which
is Amazon’s IaaS offering, followed by HP’s flagship product called CloudSystem
Matrix and finally Cells as a Service, an HP Labs research prototype that offers
some advanced features.

STORAGE AS A SERVICE: AMAZON STORAGE SERVICES
Data is the lifeblood of an enterprise. Enterprises have varied requirements for
data, including structured data in relational databases that power an e-commerce
business, or documents that capture unstructured data about business processes,
plans and visions. Enterprises may also need to store objects on behalf of their
customers, like an online photo album or a collaborative document editing plat-
form. Further, some of the data may be confidential and must be protected, while
others data should be easily shareable. In all cases, business critical data should
be secure and available on demand in the face of hardware and software failures,
network partitions and inevitable user errors.

NOTE
Amazon Storage Services
• Simple Storage Service (S3): An object store
• SimpleDB: A Key-value store
• Relational Database Service (RDS): MySQL instance

Amazon Simple Storage Service (S3)
Amazon Web Services (AWS), from Amazon.com, has a suite of cloud service
products that have become very popular and are almost looked up to as a de facto
standard for delivering IaaS. Figure 2.1 shows a screen shot of AWS depicting its
different IaaS products in multiple tabs (S3, EC2, CloudWatch). This chapter
covers a good amount of detail of S3, SimpleDB, EBS, RDS, and EC2 and Chap-
ter 8 describes CloudWatch.

Amazon S3 is a highly reliable, highly available, scalable and fast storage in the
cloud for storing and retrieving large amounts of data just through simple web
services. This section gives some preliminary details of the platform first and then,
takes a simple example of using S3, followed by a detailed description of S3 features
[1]. More advanced uses of S3 are described in a later section on Amazon EC2, with
an example of how S3 APIs can be used by developers together with other Amazon
compute services (such as EC2) to form a complete IaaS solution. First, a look at
how one can use S3 as a simple cloud storage to upload files.

Accessing S3
There are three ways of using S3. Most common operations can be performed via the
AWS console, the GUI interface to AWS (shown in Figure 2.1) that can be accessed

24 CHAPTER 2 Infrastructure as a Service

via http://aws.amazon.com/console. For use of S3 within applications, Amazon
provides a REST-ful API with familiar HTTP operations such as GET, PUT,
DELETE, and HEAD. Also, there are libraries and SDKs for various languages that
abstract these operations.

NOTE
S3 Access Methods
• AWS Console
• Amazon’s RESTful API
• SDKs for Ruby and other languages

Additionally, since S3 is a storage service, several S3 browsers exist that allow
users to explore their S3 account as if it were a directory (or a folder). There are
also file system implementations that let users treat their S3 account as just another
directory on their local disk. Several command line utilities [2, 3] that can be used
in batch scripts also exist, and are described towards the end of this section.

Getting Started with S3
Let’s start with a simple personal use-case. Consider a user having a directory full
of personal photos that they want to store in the cloud for backup. Here’s how
this could be approached:

1. Sign up for S3 at http://aws.amazon.com/s3/. While signing up, obtain the
AWS Access Key and the AWS Secret Key. These are similar to userid and

FIGURE 2.1

AWS console.

Storage as a Service: Amazon Storage Services 25

http://aws.amazon.com/console
http://aws.amazon.com/s3/

password that is used to authenticate all transactions with Amazon Web
Services (not just S3).

2. Sign in to the AWS Management Console for S3 (see Figure 2.1) at https://
console.aws.amazon.com/s3/home.

3. Create a bucket (see Figure 2.2) giving a name and geographical location
where it can be stored. In S3 all files (called objects) are stored in a bucket,
which represents a collection of related objects. Buckets and objects are
described later in the section Organizing Data in S3: Buckets, Objects and
Keys.

4. Click the Upload button (see Figure 2.3) and follow the instructions to upload
files.

5. The photos or other files are now safely backed up to S3 and available for
sharing with a URL if the right permissions are provided.

From a developer perspective, this can also be accomplished programmatically,
in case there is a need to include this functionality in a program.

Organizing Data In S3: Buckets, Objects and Keys
Files are called objects in S3. Objects are referred to with keys – basically an
optional directory path name followed by the name of the object. Objects in S3
are replicated across multiple geographic locations to make it resilient to several
types of failures (however, consistency across replicas is not guaranteed). If object
versioning is enabled, recovery from inadvertent deletions and modifications is

FIGURE 2.2

Creating a bucket.

26 CHAPTER 2 Infrastructure as a Service

https://console.aws.amazon.com/s3/home
https://console.aws.amazon.com/s3/home

possible. S3 objects can be up to 5 Terabytes in size and there are no limits on
the number of objects that can be stored. All objects in S3 must be stored in a
bucket. Buckets provide a way to keep related objects in one place and separate
them from others. There can be up to 100 buckets per account and an unlimited
number of objects in a bucket.

Each object has a key, which can be used as the path to the resource in an HTTP
URL. For example, if the bucket is named johndoe and the key to an object is
resume.doc, then its HTTP URL is http://s3.amazonaws.com/johndoe/resume.doc
or alternatively, http://johndoe.s3.amazonaws.com/resume.doc By convention,
slash-separated keys are used to establish a directory-like naming scheme for con-
venient browsing in S3 explorers such as the AWS Console, S3Fox, etc. For exam-
ple, one can have URLs such as http://johndoe.s3.amazon.aws.com/project1/file1.c,
http://johndoe.s3.amazon.aws.com/project1/file2.c, and http://johndoe.s3.amazon
.aws.com/project2/file1.c. However, these are files with keys (names) project1/
file1.c, and so on, and S3 is not really a hierarchical file system. Note that the
bucket namespace is shared; i.e., it is not possible to create a bucket with a name
that has already been used by another S3 user.

Note that entering the above URLs into a browser will not work as expected;
not only are these values fictional, even if real values were substituted for the
bucket and key, the result would be an “HTTP 403 Forbidden” error. This is
because the URL lacks authentication parameters; S3 objects are private by default
and requests should carry authentication parameters that prove the requester has

FIGURE 2.3

Uploading objects.

Storage as a Service: Amazon Storage Services 27

http://s3.amazonaws.com/johndoe/resume.doc
http://johndoe.s3.amazonaws.com/resume.doc
http://johndoe.s3.amazon.aws.com/project1/file1.c
http://johndoe.s3.amazon.aws.com/project1/file2.c
http://johndoe.s3.amazon.aws.com/project2/file1.c
http://johndoe.s3.amazon.aws.com/project2/file1.c

rights to access the object, unless the object has “Public” permissions. Typically the
client library, SDK or application will use the AWS Access Key and AWS Secret
Key described later to compute a signature that identifies the requester, and append
this signature to the S3 request. For example, the S3 Getting Started Guide is stored
in the awsdocs bucket at the S3/latest/s3-gsg.pdf key with anonymous read
permissions; hence it is available to everyone at http://s3.amazonaws.com/awsdocs/
S3/latest/s3-gsg.pdf.

S3 Administration
In any enterprise, data is always coupled to policies that determine the location of
the data and its availability, as well as who can and cannot access it. For security
and compliance with local regulations, it is necessary to be able to audit and log
actions and be able to undo inadvertent user actions. S3 provides facilities for all
of these, described as follows:

Security: Users can ensure the security of their S3 data by two methods. First,
S3 offers access control to objects. Users can set permissions that allow others
to access their objects. This is accomplished via the AWS Management Console.
A right-click on an object brings up the object actions menu (see Figure 2.4).
Granting anonymous read access to objects makes them readable by anyone; this
is useful, for example, for static content on a web site. This is accomplished by
selecting the Make Public option on the object menu. It is also possible to narrow
read or write access to specific AWS accounts. This is accomplished by selecting

FIGURE 2.4

Amazon S3: Performing actions on objects.

28 CHAPTER 2 Infrastructure as a Service

http://s3.amazonaws.com/awsdocs/S3/latest/s3-gsg.pdf
http://s3.amazonaws.com/awsdocs/S3/latest/s3-gsg.pdf

the Properties option that brings up another menu (not shown) that allows users to
enter the email ids of users to be allowed access. It is also possible to allow others
to put objects in a bucket in a similar way. A common use for this is to provide
clients with a way to submit documents for modification, which are then written
to a different bucket (or different keys in the same bucket) where the client has
permissions to pick up the modified document.

The other method that helps secure S3 data is to collect audit logs. S3 allows
users to turn on logging for a bucket, in which case it stores complete access logs
for the bucket in a different bucket (or, if desired, the same bucket). This allows
users to see which AWS account accessed the objects, the time of access, the IP
address from which the accesses took place and the operations that were
performed. Logging can be enabled from the AWS Management Console
(Figure 2.5). Logging can also be enabled at the time of bucket creation.

Data protection: S3 offers two features to prevent data loss [1]. By default, S3
replicates data across multiple storage devices, and is designed to survive two replica
failures. It is also possible to request Reduced Redundancy Storage(RRS) for non-
critical data. RRS data is replicated twice, and is designed to survive one replica fail-
ure. It is important to note that Amazon does not guarantee consistency among the
replicas; e.g., if there are three replicas of the data, an application reading a replica
which has a delayed update could read an older version of the data. The technical
challenges of ensuring consistency, approaches to solve it and trade-offs to be made
are discussed in detail in the Data Storage section of Chapter 5.

FIGURE 2.5

Amazon S3 bucket logging.

Storage as a Service: Amazon Storage Services 29

Versioning: If versioning is enabled on a bucket, then S3 automatically stores
the full history of all objects in the bucket from that time onwards. The object can
be restored to a prior version, and even deletes can be undone. This guarantees
that data is never inadvertently lost.

Regions: For performance, legal and other reasons, it may be desirable to have
S3 data running in specific geographic locations. This can be accomplished at the
bucket level by selecting the region that the bucket is stored in during its creation.
The region corresponds to a large geographic area, such as the USA (California)
or Europe. The current list of regions can be found on the S3 web site [1].

Large Objects and Multi-part Uploads
The object size limit for S3 is 5 terabytes, which is more than is required to store
an uncompressed 1080p HD movie. In the instance that this is not sufficient, the
object can be stored in smaller chunks with the splitting and re-composition being
managed in the application, using the data.

Although Amazon S3 has high aggregate bandwidth available, uploading large
objects will still take some time. Additionally, if an upload fails, the entire object
needs to be uploaded again. Multi-part upload solves both problems elegantly. S3
provides APIs that allow the developer to write a program that splits a large object
into several parts and uploads each part independently [4]. These uploads can be par-
allelized for greater speed to maximize the network utilization. If a part fails to
upload, only that part needs to be re-tried. S3 supported up to 10,000 parts per object
as of writing of this book.

Amazon Simple DB
Unlike Amazon S3 that provides a file level operations, SimpleDB (SDB) provides a
simple data store interface in the form of a key-value store. It allows storage and retrie-
val of a set of attributes based on a key. Use of key-value stores is an alternative to
relational databases that use SQL-based queries. It is a type of NoSQL data store. A
detailed comparison of key-value stores with relational databases, is found in the sec-
tion Scaling Storage in Chapter 6. The next section provides a short overview of SDB.

Data Organization and Access
Data in SDB is organized into domains. Each item in a domain has a unique key that
must be provided during creation. Each item can have up to 256 attributes, which are
name-value pairs. In terms of the relational model, for each row, the primary key
translates to the item name and the column names and values for that row translate to
the attribute name-value pairs. For example, if it is necessary to store information
regarding an employee, it is possible to store the attributes of the employee (e.g., the
employee name) indexed by an appropriate key, such as an employee id. Unlike an
RDBMS, attributes in SDB can have multiple values – e.g., if in a retail product
database, the list of keywords for each item in the product catalog can be stored as a
single value corresponding to the attribute keywords; doing this with an RDBMS

30 CHAPTER 2 Infrastructure as a Service

would be more complex. More in-depth technical details of NoSQL data stores can
be found in Chapter 5.

SDB provides a query language that is analogous to SQL, although there are
methods to fetch a single item. Queries take advantage of the fact that SDB auto-
matically indexes all attributes. A more detailed description of SDB and the use
of its API is described with an example in a later section on Amazon EC2.

SDB Availability and Administration
SDB has a number of features to increase availability and reliability. Data stored
in SDB is automatically replicated across different geographies for high availability.
It also automatically adds compute resources in proportion to the request rate
and automatically indexes all fields in the dataset for efficient access. SDB is
schema-less; i.e., fields can be added to the dataset as the need arises. This and
other advantages of NoSQL to provide a scalable store are discussed in Chapter 5,
Paradigms for Developing Cloud Applications.

Amazon Relational Database Service
Amazon Relational Database Service (RDS) provides a traditional database
abstraction in the cloud, specifically a MySQL instance in the cloud. An RDS
instance can be created using the RDS tab in the AWS Management Console (see
Figure 2.6).

FIGURE 2.6

AWS console: relational database service.

Storage as a Service: Amazon Storage Services 31

AWS performs many of the administrative tasks associated with maintaining
a database for the user. The database is backed up at configurable intervals,
which can be as frequent as 5 minutes. The backup data are retained for a con-
figurable period of time which can be up to 8 days. Amazon also provides the
capability to snapshot the database as needed. All of these administrative tasks
can be performed through the AWS console (as in Figure 2.6). Alternatively, it
is possible to develop a custom tool which will perform the tasks through the
Amazon RDS APIs.

COMPUTE AS A SERVICE: AMAZON ELASTIC COMPUTE
CLOUD (EC2)
The other important type of IaaS is Compute as a Service, where computing
resources are offered as a service. Of course, for a useful compute as a service
offering, it should be possible to associate storage with the computing service (so
that the results of the computation can be made persistent). Virtual networking is
needed as well, so that it is possible to communicate with the computing instance.
All these together make up Infrastructure as a Service.

Amazon’s Elastic Compute Cloud (EC2), one of the popular Compute as a
Service offerings, is the topic of this section. The first part of this section provides
an overview of Amazon EC2. This is then followed by a simple example that
shows how EC2 can be used to set up a simple web server. Next, a more complex
example that shows how EC2 can be used with Amazon’s StaaS offerings to build
a portal whereby customers can share books is presented. Finally, an example that
illustrates advanced features of EC2 is shown.

Overview of Amazon EC2
Amazon EC2 allows enterprises to define a virtual server, with virtual storage and
virtual networking. As the computational needs of an enterprise can vary greatly,
some applications may be compute-intensive, and other applications may stress
storage. Certain enterprise applications may need certain software environments and
other applications may need computational clusters to run efficiently. Networking
requirements may also vary greatly. This diversity in the compute hardware, with
automatic maintenance and ability to handle the scale, makes EC2 a unique platform.

Accessing EC2 Using AWS Console
As with S3, EC2 can be accessed via the Amazon Web Services console at http://
aws.amazon.com/console. Figure 2.7 shows the EC2 Console Dashboard, which
can be used to create an instance (a compute resource), check status of user’s
instances and even terminate an instance. Clicking on the “Launch Instance”
button takes the user to the screen shown in Figure 2.8, where a set of supported
operating system images (called Amazon Machine Images, AMI) are shown to

32 CHAPTER 2 Infrastructure as a Service

http://aws.amazon.com/console
http://aws.amazon.com/console

FIGURE 2.7

AWS EC2 console.

FIGURE 2.8

Creating an EC2 instance using the AWS console.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 33

choose from. More on types of AMI and how one should choose the right one are
described in later sections in this chapter. Once the image is chosen, the EC2
instance wizard pops up (Figure 2.9) to help the user set further options for the
instance, such as the specific OS kernel version to use, whether to enable moni-
toring (using the CloudWatch tool described in Chapter 8) and so on. Next, the
user has to create at least one key-value pair that is needed to securely connect
to the instance. Follow the instructions to create a key-pair and save the file
(say my_keypair.pem) in a safe place. The user can reuse an already created
key-pair in case the user has many instances (it is analogous to using the same
username-password to access many machines). Next, the security groups for the
instance can be set to ensure the required network ports are open or blocked for
the instance. For example, choosing the “web server” configuration will enable
port 80 (the default HTTP port). More advanced firewall rules can be set as
well. The final screen before launching the instance is shown in Figure 2.10.
Launching the instance gives a public DNS name that the user can use to login
remotely and use as if the cloud server was on the same network as the client
machine.

For example, to start using the machine from a Linux client, the user gives the
following command from the directory where the key-pair file was saved. After a

FIGURE 2.9

The EC2 instance wizard.

34 CHAPTER 2 Infrastructure as a Service

few confirmation screens, the user is logged into the machine to use any Linux
command. For root access the user needs to use the sudo command.

ssh -i my_keypair.pem ec2-67-202-62-112.compute-1.amazonaws.com

For Windows, the user needs to open the my_keypair.pem file and use the
“Get Windows Password” button on the AWS Instance page. The console returns
the administrator password that can be used to connect to the instance using a
Remote Desktop application (usually available at Start-> All Programs -> Acces-
sories -> Remote Desktop Connection).

A description of how to use the AWS EC2 Console to request the computa-
tional, storage and networking resources needed to set up and launch a web server
is described in the Simple EC2 example: Setting up a Web Server section of this
chapter.

Accessing EC2 Using Command Line Tools
Amazon also provides a command line interface to EC2 that uses the EC2 API to
implement specialized operations that cannot be performed with the AWS console.
The following briefly describes how to install and set up the command line utilities.
More details are found in Amazon Elastic Compute Cloud User Guide [5].

FIGURE 2.10

Parameters that can be enabled for a simple EC2 instance.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 35

The details of the command line tools are found in Amazon Elastic Compute Cloud
Command Line Reference [6].

NOTE
Installing EC2 command line tools
• Download tools
• Set environment variables (e.g., location of JRE)
• Set security environment (e.g., get certificate)
• Set region

Download tools: The EC2 command line utilities can be downloaded from
Amazon EC2 API Tools [7] as a Zip file. They are written in Java, and hence will
run on Linux, Unix, and Windows if the appropriate JRE is available. In order to
use them simply unpack the file, and then set appropriate environment variables,
depending upon the operating system being used. These environment variables
can also be set as parameters to the command.

Set environment variables: The first command sets the environment variable
that specifies the directory in which the Java runtime resides. PATHNAME should be the
full pathname of the directory where the java.exe file can be found. The second com-
mand specifies the directory where the EC2 tools reside; TOOLS_PATHNAME should be
set to the full pathname of the directory named ec2-api-tools-A.B-nnn into which
the tools were unzipped (A, B and nnn are some digits that differ based on the ver-
sion used). The third command sets the executable path to include the directory
where the EC2 command utilities are present.

For Linux:
$export JAVA_HOME=PATHNAME
$export EC2_TOOLS=TOOLS_PATHNAME
$export PATH=$PATH:$EC2_HOME/bin
For Windows:
C:\>SET JAVA_HOME=PATHNAME
C:\>SET EC2_TOOLS=TOOLS_PATHNAME
C:\>SET PATH=%PATH%,%EC2_HOME%\bin

Set up security environment: The next step is to set up the environment so
that the EC2 command line utilities can authenticate to AWS during each interac-
tion. To do this, it is necessary to download an X.509 certificate and private key
that authenticates HTTP requests to Amazon. The X.509 certificate can be
generated by clicking on the “Account” link shown in Figure 2.7, clicking on the
“Security Credentials” link that is displayed, and following the given instructions to
create a new certificate. The certificate files should be downloaded to a .ec2
directory in the home directory on Linux/Unix, and C:\ec2 on Windows, without
changing their names. The following commands are to be executed to set up the

36 CHAPTER 2 Infrastructure as a Service

environment; both Linux and Windows commands are given. Here, f1.pem is the
certificate file downloaded from EC2.

$export EC2-CERT=~/.ec2/f1.pem
or
C:\> set EC2-CERT=~/.ec2/f1.pem

Set region: It is necessary to next set the region that the EC2 command tools
interact with – i.e., the location in which the EC2 virtual machines would be cre-
ated. AWS regions are described in a subsequent section titled S3 Administration.
In brief, each region represents an AWS data center, and AWS pricing varies by
region. The command ec2-describe-regions can be issued at this point to test
the installation of the EC2 command tools and list the available regions.

The default region used is the US-East region “us-east-1” with service end-
point URL http://ec2.us-east-1.amazonaws.com, but can be set to any specific end
point using the following command, where ENDPOINT_URL is formed from the
region name as illustrated for the “us-east-1”.

$export EC2-URL=https://<ENDPOINT_URL>
Or
C:\> set EC2-URL =https://<ENDPOINT_URL>

A later section explains how developers can use the EC2 and S3 APIs to set
up a web application in order to implement a simple publishing portal such as the
Pustak Portal (running example used in this book). Before that one needs to
understand more about what a computation resource is and the parameters that
one can configure for each such resource, described in the next section.

EC2 Computational Resources
This section gives a brief overview of the computational resources available on
EC2 first, followed by the storage and network resources, more details of which
are available at EC2 Introduction [8].

Computing resources: The computing resources available on EC2, referred to
as EC2 instances, consist of combinations of computing power, together with
other resources such as memory. Amazon measures the computing power of an
EC2 instance in terms of EC2 Compute Units [9]. An EC2 Compute Unit (CU)
is a standard measure of computing power in the same way that bytes are a stan-
dard measure of storage. One EC2 CU provides the same amount of computing
power as a 1.0–1.2 GHz Opteron or Xeon processor in 2007. Thus, if a developer
requests a computing resource of 1 EC2 CU, and the resource is allocated on a
2.4 GHz processor, they may get 50% of the CPU. This allows developers to
request standard amounts of CPU power regardless of the physical hardware.

The EC2 instances that Amazon recommends for most applications belong to
the Standard Instance family [8]. The characteristics of this family are shown in
Table 2.1, EC2 Standard Instance Types. A developer can request a computing
resource of one of the instance types shown in the table (e.g., a Small computing

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 37

http://ec2.us-east-1.amazonaws.com

instance, which would have the characteristics shown). Figure 2.8 showed how
one can do this using the AWS console. Selection of local storage is discussed
later in the section titled EC2 Storage Resources.

Other instance families available in Amazon at the time of writing this book
include the High-Memory Instance family, suitable for databases and other
memory-hungry applications; the High-CPU Instance family for compute-
intensive applications; the Cluster-Compute Instance family for High-Performance
Compute (HiPC) applications, and the Cluster GPU Instance family which
include Graphic Processing Units (GPUs) for HiPC applications that need
GPUs [8].

Software: Amazon makes available certain standard combinations of operat-
ing system and application software in the form of Amazon Machine Images
(AMIs). The required AMI has to be specified when requesting the EC2
instance, as seen earlier. The AMI running on an EC2 instance is also called the
root AMI.

Operating systems available in AMIs include various flavors of Linux, such as
Red Hat Enterprise Linux and SuSE, the Windows server, and Solaris. Software
available includes databases such as IBM DB2, Oracle and Microsoft SQL Server.
A wide variety of other application software and middleware, such as Hadoop,
Apache, and Ruby on Rails, are also available [8].

There are two ways of using additional software not available in standard
AMIs. It is possible to request a standard AMI, and then install the additional
software needed. This AMI can then be saved as one of the available AMIs in
Amazon. The other method is to import a VMware image as an AMI using the
ec2-import-instance and ec2-import-disk-image commands. For more details
of how to do this, the reader is referred to [9].

Regions and Availability Zones: EC2 offers regions, which are the same as
the S3 regions described in the section S3 Administration. Within a region,
there are multiple availability zones, where each availability zone corresponds
to a virtual data center that is isolated (for failure purposes) from other avail-
ability zones. Thus, an enterprise that wishes to have its EC2 computing
instances in Europe could select the “Europe” region when creating EC2
instances. By creating two instances in different availability zones, the enter-
prise could have a highly available configuration that is tolerant to failures in
any one availability zone.

Table 2.1 EC2 Standard Instance Types

Instance Type Compute Capacity Memory
Local
Storage Platform

Small 1 virtual core of 1 CU 1.7GB 160GB 32-bit
Large 2 virtual cores, 2 CU each 7.5GB 850GB 64-bit
Extra Large 4 virtual cores, 2 CU each 15GB 1690GB 64-bit

38 CHAPTER 2 Infrastructure as a Service

Load Balancing and Scaling: EC2 provides the Elastic Load Balancer,
which is a service that balances the load across multiple servers. Details of its
usage are in the section EC2 Example: Article Sharing in Pustak Portal. The
default load balancing policy is to treat all requests as being independent. How-
ever, it is also possible to have timer-based and application controlled sessions,
whereby successive requests from the same client are routed to the same server
based upon time or application direction [10]. The load balancer also scales the
number of servers up or down depending upon the load. This can also be used as
a failover policy, since failure of a server is detected by the Elastic Load Balancer.
Subsequently, if the load on the remaining server is too high, the Elastic Load
Balancer could start a new server instance.

Once the compute resources are identified, one needs to set any storage
resources needed. The next section describes more on the same.

NOTE
EC2 Storage Resources
• Amazon S3: Highly available object store
• Elastic Block Service: permanent block storage
• Instance Storage: transient block storage

EC2 Storage Resources
As stated earlier, computing resources can be used along with associated storage
and network resources in order to be useful. S3, which is the file storage offered
by Amazon, has already been described in the Amazon Storage Services section.
Use of the S3 files is similar to accessing an HTTP server (a web file system).
However, many times an application performs multiple disk IOs and for perfor-
mance and other reasons one needs to have a control on the storage configuration
as well. This section describes how one can configure resources that appear to be
physical disks to the EC2 server, called block storage resources. There are two
types of block storage resources: Elastic Block Service, and instance storage,
described next.

Elastic Block Service (EBS): In the same way that S3 provides file storage
services, EBS provides a block storage service for EC2. It is possible to request
an EBS disk volume of a particular size and attach this volume to one or multiple
EC2 instances using the instance ID returned during the time the volume is cre-
ated. Unlike the local storage assigned during the creation of an EC2 instance, the
EBS volume has an existence independent of any EC2 instance, which is critical
to have persistence of data, as detailed later.

Instance Storage: Every EC2 instance has local storage that can be configured
as a part of the compute resource (Figure 2.8) and this is referred to as instance
storage. Table 2.2 shows the default partitioning of instance storage associated
with each EC2 instance for standard instance types. This instance storage is

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 39

ephemeral (unlike EBS storage); i.e., it exists only as long as the EC2 instance
exists, and cannot be attached to any other EC2 instance. Furthermore, if the EC2
instance is terminated, the instance storage ceases to exist. To overcome this lim-
itation of local storage, developers can use either EBS or S3 for persistent storage
and sharing.

The instance AMI, configuration files and any other persistent files can be
stored in S3 and during operation, a snapshot of the data can be periodically
taken and sent to S3. If data needs to be shared, this can be accomplished via
files stored in S3. An EBS storage can also be attached to an instance as desired.
A detailed example of how one does this is described later in the context of
Pustak Portal.

Table 2.3 summarizes some of the main differences and similarities between
the two types of storage.

S3-backed instances vs. EBS-backed instances: EC2 compute and storage
resources behave slightly differently depending upon whether the root AMI for
the EC2 instance is stored in Amazon S3 or in Amazon Elastic Block Service

Table 2.2 Partitioning of Local Storage in Standard EC2 Instance Types

Small Large Extra Large

Linux /dev/sda1: root file
system
/dev/sda2: /mnt
/dev/sda3: /swap

/dev/sda1: root file
system
/dev/sdb: /mnt/
dev/sdc
/dev/sdd
/dev/sde

/dev/sda1: root file
system
/dev/sdb: /mnt
/dev/sdc
/dev/sdd
/dev/sde

Windows /dev/sda1: C:
xvdb

/dev/sda1: C:
xvdb
xvdc
xvdd
xvde

/dev/sda1: C:
xvdb
xvdc
xvdd
xvde

Table 2.3 Comparison of Instance Storage and EBS Storage

Instance Storage EBS storage

Creation Created by default when an EC2
instance is created

Created independently of EC2
instances.

Sharing Can be attached only to EC2
instance with which it is created.

Can be shared between EC2
instances.

Attachment Attached by default to S3-backed
instances; can be attached to
EBS-backed instances

Not attached by default to any
instance.

Persistence Not persistent; vanishes if EC2
instance is terminated

Persistent even if EC2
instance is terminated.

S3 snapshot Can be snapshotted to S3 Can be snapshotted to S3

40 CHAPTER 2 Infrastructure as a Service

(EBS). These instances are referred to as S3-backed instances and EBS-backed
instances, respectively. In an S3-backed instance, the root AMI is stored in S3,
which is file storage. Therefore, it must be copied to the root device in the EC2
instance before the EC2 instance can be booted. However, since instance storage
is not persistent, any modifications made to the AMI of an S3-backed instance
(such as patching the OS or installing additional software) will not be persistent
beyond the lifetime of the instance. Furthermore, while instance storage is
attached by default to an S3-backed instance (as shown in Table 2.2), instance
storage is not attached by default to EBS-backed instances.

EC2 Networking Resources
In addition to compute and storage resources, network resources are also needed
by applications. For networking between EC2 instances, EC2 offers both a public
address as well as a private address [5]. It also offers DNS services for managing
DNS names associated with these IP addressees. Access to these IP addresses is
controlled by policies. The Virtual Private Cloud can be used to provide secure
communication between an Intranet and the EC2 network. One can also create a
complete logical sub network and expose it to public (a DMZ) with its own fire-
wall rules. Another interesting feature of EC2 is the Elastic IP addresses which
are independent of any instance, and this feature can be used to support failover
of servers. These advanced features and how these can be used to set up a net-
work are described in this section, after understanding the key terminologies next.

NOTE
EC2 Networking
• Private and public IP addresses per instance
• Elastic IP addresses not associated with any instance
• Route 53 DNS that allows simple URLs (e..g. www.mywebsite.com)
• Security groups for networking security policies

Instance addresses: Each EC2 instance has two IP addresses associated with
it – the public IP address and the private IP address. The private IP address
and DNS name can be resolved only within the EC2 cloud. For communication
between EC2 instances, the internal IP addresses are most efficient, for the mes-
sages then pass entirely within the Amazon network. The public IP address and
DNS name can be used for communication outside the Amazon cloud.

Elastic IP addresses: These IP addresses are independent of any instance, but
are associated with a particular Amazon EC2 account and can be dynamically
assigned to any instance (in which case, the public IP address is de-assigned).
Therefore, they are useful for implementing failover. Upon failure of one EC2
instance, the Elastic IP address can be dynamically assigned to another EC2
instance. Unlike instance IP addresses, Elastic IP addresses are not automatically
allocated; they have to be generated when needed.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 41

http://www.mywebsite.com

Route 53: Enterprises may desire to publish a URL of the form http://www.
myenterprise.com for EC2 instances. This is not possible by default, since the
EC2 instances are inside the amazon.com domain. Route 53 is a DNS server that
can be used to associate an Elastic IP address or public IP address with a name of
the form www.myenterprise.com.

Security Groups: For networking security, it is common to define network
security policies that restrict the ports through which any machine can be
accessed, or the IP addresses that can access a server. The same can be achieved
for EC2 instances using security groups, briefly mentioned earlier. Each security
group is a collection of network security policies. Different security groups should
be created for different server types; for example, the web server security group
could specify that port 80 may be opened for incoming connections. The default
security group when creating an EC2 instance allows the instance to connect to
any outside IP address but disallows incoming connections.

Virtual Private Cloud: Enterprises that desire more control over their net-
working configuration can use Virtual Private Cloud (VPC). Examples of the
advanced networking features offered by VPC include:

i. the ability to allocate both public and private IP addresses to instances from
any address range

ii. the ability to divide the addresses into subnets and control the routing between
subnets

iii. the ability to connect the EC2 network with an Intranet using a VPN tunnel.
Details of VPC are beyond the scope of this book and can be found in Amazon
Virtual Private Cloud [11].

Simple EC2 Example: Setting up a Web Server
Now, all the terminologies and concepts learned in the previous two sections will
be used in a simple example of creating a web server. The web server will be cre-
ated as an EBS-backed instance, to avoid the necessity of having to periodically
back up the storage to S3.

The process is broken down into four steps:

i. Selecting the AMI for the instance
ii. Creating the EC2 instance and installing the web server
iii. Creating an EBS volume for data, such as HTML files and so on
iv. Setting up networking and access rules.

It is assumed that the data needed for the web server (HTML files, scripts,
executables, and so on) are available, and have been uploaded to EC2. Further-
more, to illustrate how to install custom software on a standard AMI, it is
assumed that the web server needed also has to be uploaded to EC2 and
then installed (in reality, a web server instance may be available as an image
as well).

42 CHAPTER 2 Infrastructure as a Service

http://www.myenterprise.com
http://www.myenterprise.com
http://www.myenterprise.com

Selecting the AMI
Instructions to create a new EC2 instance using the AWS console were described
earlier. The user may recall that one step during this process is selecting an AMI
(discussed around Figure 2.8). More details of this phase to perform advanced
functionality are described next.

Using the dropdown menus to select “Amazon Images” and “Amazon Linux”
brings up a list of Linux images supplied by Amazon, as shown in Figure 2.11.
Here, the root device column indicates whether the root device for the image is
EBS or not. Some of the important parameters of the AMI are in the “Descrip-
tion” tag in the lower half of the figure. It can be seen that the image is a 64-bit
Amazon Linux image with the root device /dev/sda1 in EBS. The value true in
the “Block Devices” field is the DeleteUponTerminate flag and indicates that the
device is not persistent; i.e., it will vanish if the EC2 instance terminates. Clicking
the “Launch” button brings up the launch wizard, which goes through a number
of steps (such as selecting the size of the machine, and possibly creating a new
key pair) before launching the EC2 instance. However, at the time of this writing,
there is no way to create an EC2 instance with a persistent root device through
the AWS Console. Therefore, the next section describes how to launch the EC2
instance using the command line.

Creating the Example EC2 Instance
Two other important steps done during the creation of an instance are (i) generate a
key pair that provides access to the EC2 servers that are created and (ii) create a

FIGURE 2.11

Selecting an AMI.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 43

security group that will be associated with the instance and specify the networking
access rules. In our example, since the instance created will not have the required
software (web server) installed on it by default, the security group created will
initially be an empty security group that disallows any incoming network access.
Subsequently, the security group will be modified to allow HTTP access.

The key pair is generated from the EC2 console (see Figure 2.11) by clicking
on the “Key Pair” link, following the instructions and downloading the resulting
files (called f2.pem in this example). In the earlier section, there was a necessity
to execute the remote shell command from the directory where the key-pair (.pem)
file was stored. The following script shows how to set an environment variable
named EC2-PRIVATE-KEY so as to make the downloaded key the default key-pair
for EC2 instances.

For Linux:
$ export EC2-PRIVATE-KEY=~/.ec2/f2.pem
$ ec2addgrp "Web Server" –d "Security Group for Web Servers"
$ ec2run ami-74f0061d –b dev/sda1=::false –k f2.pem –g “Web Server”

For Windows:

C:\> set EC2-PRIVATE-KEY =C:\.ec2\f2.pem
C:\> ec2addgrp "Web Server" –d "Security Group for Web Servers"
C:\> ec2run ami-74f0061d –b "xvda=::false" –k f2.pem –g "Web Server"

In the above example, the ec2addgrp command (short for ec2-create-group)
creates a security group called “Web Server” and disallows all external access. As
stated earlier, this rule will later be modified to allow HTTP access. Next, the
ec2run command (short form for ec2-run-instances command) is used to start
the instance with a persistent EBS root volume. The first parameter is the AMI id
of the AMI selected in Figure 2.11. The value false in the –b flag (which con-
trols the behavior of the root volume) indicates that the DeleteUponTerminate
flag for this volume is to be set to false. This implies that the volume will not be
deleted even if the EC2 instance terminates. The –k and –g parameters specify the
keypair that can be used to communicate with the instance and the security group
for the instances, respectively. The number of instances to be launched defaults to
1. A range can be explicitly specified using the –instance-count parameter.
More details of all the command line options for EC2 are available at Amazon
Elastic Compute Cloud Command Line Reference [6].

The DNS name for the newly created instance is available from AWS con-
sole. Alternatively, the ec2-describe-instances command (ec2din is the
short form) can be also used to get the public DNS name of the instance.
Subsequently, ssh, PuTTY or Remote Desktop Connection can be used to
login to the instance and download the software to be installed (via yum, for
example). After installing the additional software, the image can be saved on
EBS as an AMI using the ec2-create-instance command. The parameter
instanceId is the instance id of the EC2 instance, and the command returns

44 CHAPTER 2 Infrastructure as a Service

the AMI Id of the newly created EBS AMI. These steps are shown in the
following script:

For Linux :
$ ec2din
$ ssh –i f2.pem instance-id
$ ec2-create-instance –n "Web Server AMI" instanceId

For Windows:

C:\>ec2-describe-instances
C:\putty
C:\>ec2-create-instance –n "Web Server AMI" instanceId

Attaching an EBS Volume
Since the HTML pages to be served from the web portal need to be persistent, it
is required to create an EBS volume for holding the HTML pages that are to be
served by the web server. EBS volumes can be created from the EC2 console (see
Figure 2.11) by clicking on the “Volumes” link. This brings up a listing of all
EBS volumes currently owned by the user. Clicking the “Create Volume” button
brings up the screen shown in Figure 2.12, where the size of the needed volume
can be specified before being created.

The new volume that has been created is shown on the “Volumes” screen
with a status of available (see masked content on Figure 2.13). Clicking on the
“Attach Volume” button brings up the “Attach Volume” screen (Figure 2.13),
which has drop-down menus for the EC2 instance to be used, as well as
the device name (xvdf to xvdp for Windows, /dev/sdf to /dev/sdp for Linux).
After making the appropriate selections, clicking the “Attach” button will virtually

FIGURE 2.12

Creating an EBS volume.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 45

attach the volume to the selected instance. At this stage, an EC2 instance has been
created, the web server has been installed and a separate persistent store on EBS
has been attached.

Allowing External Access to the Web Server
Since the web server is now ready for operation, external access to it can now be
enabled. Clicking on the “Security Groups” link at the left of the EC2 console
brings up a list of all security groups available. Figure 2.14 shows the available
security groups, which consist of the newly created group “Web Server” and two
default groups. By clicking on the “Inbound” tab, it is possible to input rules that
specify the type of traffic allowed. Figure 2.14 shows how to add a new rule that
allows traffic on port 80 from all IP addresses (specified by the 0 IP address). A
specific IP address can also be typed in to allow a specific IP address to be
allowed. Clicking the “Add Rule” button adds this particular rule. After all rules
are added, clicking the “Apply Rule Changes” button activates the newly added
rules. By permitting external access to the web server, it is effectively in a DMZ
(which is a region in an Intranet where external access is allowed) [12, 13]. Simi-
larly, by disallowing external access from outside to other servers, they are effec-
tively kept out of the DMZ.

This completes the deployment of a simple web server on EC2 and EBS. The
next section makes this example much more complex allowing Web 2.0 style
usage and applies it to the Pustak Portal case study.

FIGURE 2.13

Attaching an EBS volume to an EC2 instance.

46 CHAPTER 2 Infrastructure as a Service

Using EC2 for Pustak Portal
The following section describes a more complex case of deploying the running
example of Pustak Portal (a simple book publishing portal detailed in the Preface).
The Portal is enhanced to allow authors to upload and share book chapters or short
articles in various formats with readers, who have to be registered with the portal.
This kind of functionality is similar to portals of online newspapers and magazines.
For this, it is necessary to store the documents, together with metadata such as the
file type, and an access control list of readers who have been given access permis-
sion. Since a particular article may become very popular due to its topical nature,
the load on the portal could vary greatly, and it is necessary that the number of ser-
vers scale up and down with usage. This motivates the use of Amazon EC2.

The high-level architecture of the enhanced Pustak Portal is shown in Figure 2.15.
The articles are stored in S3, while the associated metadata, such as article properties,
the list of users the document is shared with, etc., are stored in Simple DB. The portal
web site runs on EC2 and automatically scales up and down with usage. Example
code for this will be written in Ruby [14].

NOTE
S3 APIs illustrated
• Read object
• Write object
• Delete object

FIGURE 2.14

Modifying a security group.

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 47

Document Store for the Article Portal
RightScale has developed some Ruby Gems (packages) for AWS. First, these
open source gems are imported using the require statement.

require 's3/right_s3'

Next, initialize the S3 client with authentication credentials so that it is possi-
ble to access S3 using RightScale AWS API [15]. Recall from the Getting Started
section of the S3 section that authentication keys are generated when creating an
Amazon account.

def initialize(aws_access_key_id, aws_secret_key)
@s3 = RightAws::S3.new(aws_access_key_id, aws_secret_key);
@bucket = @s3.bucket('document_portal_store', true)

end

Assume that each author has their own bucket. In that case, they can upload
their articles using a unique identifier that they assign to the article.

def save(doc_id, doc_contents)
@bucket.put(doc_id, doc_contents)

end

EC2

EC2 Instances

Web site

S3

Documents

SimpleDB

Metadata

User
Request

FIGURE 2.15

Article sharing portal architecture.

48 CHAPTER 2 Infrastructure as a Service

Similarly, the opening of existing objects is done as follows:

def open(doc_id)
@bucket.get(doc_id).data

end

When an article is no longer relevant, the authors can delete it as follows:

def delete(doc_id)
@bucket.get(doc_id).delete

end

Storing the Article Metadata

NOTE
SimpleDB APIs illustrated
• Connect to database
• Read data
• Write data
• Search database

Assume that the following metadata has to be stored for each article: the name
of the article, author, and a list of readers. This information can be stored in Sim-
ple DB as key value pairs. Recall that SimpleDB allows one to store attributes
associated with a key. The first step is to initialize a SimpleDB client.

require 's3/right_sdb_interface'

class DocumentMetadata
def initialize(aws_access_key_id, aws_secret_key)

@domain = 'document_portal_metadata'
@sdb = RightAws::SdbInterface.new(aws_access_key_id,
aws_secret_key)

@sdb.create_domain(@domain)
end

To store the metadata for a new article, it is necessary to create an entry for
this article and write the corresponding attributes to Simple DB. Since Pustak Por-
tal created a bucket for each author, and the article names are unique within the
bucket, the combination of the author name and bucket will be unique and can be
used as the key to store and retrieve data, and is the variable doc_id. Note that
SDB values are always arrays, so name and author have to be converted to an
array.

def create(doc_id, doc_name, author, readers, writers)
attributes = {

:name => [doc_name],
:owner => [owner],

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 49

:readers => readers,
:writers => writers,

}

@sdb.put_attributes(@domain, doc_id, attributes)
end

The metadata can be retrieved as follows:

def get(doc_id)
result = @sdb.get_attributes(@domain, doc_id)
return result.has_key?(:attributes) ? result[:attributes] : {}

end

The following procedures can be used to grant or revoke access for readers:

def grant_access(doc_id, access_type, user)
attr_name = access_type == :read_only ? :readers : :writers
attributes = { attr_name => [user] }
@sdb.put_attribute(@domain, doc_id, attributes)

end

def revoke_access(doc_id, access_type, user)
attr_name = access_type == :read_only ? :readers : :writers
attributes = { attr_name => [user] }
@sdb.delete_attribute(@domain, doc_id, attributes)

end

It may also be necessary to find the articles that a user has access to. These
could be articles that were created by the user (owned) or those that other users
have granted him access to. We can use SimpleDB’s Query feature as follows:

def documents(user)
docs = { :owned => [], :read_only => [], :write => [] }
query = "['owner'='#{user}'] union ['readers'='#{user}'] union
['writers'='#{user}']"
@sdb.query(@domain, query) do |result|

result[:items].each do |doc_id, attributes|
access_type = nil
if attributes["owner"].include?(user) then
access_type = :owned
elsif attributes["readers"].include?(user) then
access_type = :read_only
end

docs[access_type] << { doc_id => attributes } if
access_type

true # tell @sdb.query to keep going
end

end

return docs
end

50 CHAPTER 2 Infrastructure as a Service

This basic data model can be used to write the views and controllers for a
Ruby-on-Rails web application that is part of Pustak Portal and allows authors to
upload, and share documents with readers. AWS also provides SDKs for Java,
.NET, PHP and also mobile platforms like Android and iOS, so the Pustak Portal
application can be developed in other languages as well as for mobile platforms.

EC2 Example: Auto-Scaling the Pustak Portal
The starting point for an AWS-based auto-scaling web site is the bundle for the
web application that captures all the dependencies for the application. For exam-
ple, the portal needs a web application and a Web Application Archive (WAR)
if the application is written in Java. Similarly, the Ruby gems if the program is
written in Ruby. Using an application bundle, one can enable auto-scaling in
two ways:

i. Using AWS Beanstalk
ii. Application-based auto-scaling.

Both approaches are discussed in the following section.

Auto-Scaling using AWS Beanstalk
AWS Beanstalk [16] is a part of EC2 that provides auto-scaling. Beanstalk auto-
mates the auto-scaling deployment process. The application developer just pro-
vides the application WAR, configures the load balancer, sets auto-scaling
parameters and Tomcat/Java parameters and also an email address for notifica-
tions. All of this can be done at the AWS Console. When Beanstalk finishes
deploying, it creates a fully functioning, auto-scaling, load-balanced web site at
http://<app-name>.elasticbeanstalk.com.

Figure 2.16 shows the Beanstalk console for the sample application provided
by Amazon. The application is running in the default environment, which consists
of Linux and Tomcat (this is actually the AMI described earlier in the chapter).
Buttons for launching a new environment (AMI) or importing a new application
in to AWS are shown in the top right of the screen. Graphs showing the perfor-
mance statistics of the application are also shown in the figure.

At the time of this writing, AWS Beanstalk only supported WAR deploy-
ments, so it was not suitable for the Pustak Portal application described earlier in
Ruby. The next section describes how one can auto-scale such (non Beanstalk)
application solutions on EC2, for a general case.

Application-controlled Auto-Scaling
If the application deployment cannot be auto-scaled using Beanstalk, then it is
necessary for the developer to develop the auto-scaling infrastructure. This can be
done in three steps as follows.

1. Select an AMI: As stated earlier, an AMI consists of the combination of the
OS and software needed by the application. A large number of AMIs,
including AMIs provided by software vendors such as IBM and Oracle, are
available at Amazon Machine Images (AMIs) [17]. If no suitable AMIs are

Compute as a Service: Amazon Elastic Compute Cloud (EC2) 51

http://<app-name>.elasticbeanstalk.com

available, it is necessary to create a custom AMI. This process is described in
the section “Creating a Custom AMI.” Make a note of the AMI Id.

2. Set up an Elastic Load balancer: From the EC2 Section of the AWS
Console (see Figure 2.16), select “Load Balancers” ->“Create Load Balancer”
and fill out the values requested. It is possible to start without any instances
initially; they will be started when auto-scaling is enabled. Make a note of the
new load balancer name.

3. Set up Auto-scaling: This is done in the command line that follows (since it
is not currently available from the AWS console). The as-create-launch-
config command creates a launch configuration using the AMI ID obtained
earlier and an EC2 instance (m1.small in this case). The as-create-auto-
scaling command creates a group of instances that will scale from 1 to a
maximum of 10, covered by the load balancer created earlier. Upon execution,
the minimum specified number of instances will be created automatically.

Auto-scaling is controlled by an auto-scaling policy. An auto-scaling policy
specifies the conditions under which the number of instances is to be scaled up or
down. The policy is specified by the as-put-scaling-policy command. The fol-
lowing code snippet states that the number of instances should be increased by 1,
with a 300-second wait time between consecutive runs to allow instances to
launch. Running this will return a policy ID, which must be noted. A scale-down
policy similar to the scale-up policy can also be specified.

The conditions under which the scale-up policy is to be executed are specified
by the mon-put-metric-alarm command. This is a CloudWatch CPU alarm set to

FIGURE 2.16

Amazon web services console for beanstalk.

52 CHAPTER 2 Infrastructure as a Service

execute the policy when CPU utilization exceeds 75%. More details about
CloudWatch, the EC2 monitoring tool, are described in Chapter 8. Finally, the
script needed to do all of the steps is as follows.

$ as-create-launch-config DocPortalLaunchConfig –image-id <image ID> –

instance-type m1.small

$as-create-auto-scaling-group DocPortalGroup –launch-configuration
DocPortalLaunchConfig –availability-zones us-east-1a –min-size 1 –max-
size 10 –load-balancers <loadbalancer name>

$ as-put-scaling-policy DocPortalScaleUp –auto-scaling-group
MyAutoScalingGroup –adjustment=1 –type ChangeInCapacity –cooldown 300

$ mon-put-metric-alarm DocPortalCPUAlarm –comparison-operator
GreaterThanThreshold –evaluation-periods 1 –metric-name CPUUtilization –

namespace "AWS/EC2" –period 600 –statistic Average –threshold 75 –alarm-
actions <policy ID> –dimensions "AutoScalingGroupName=DocPortalGroup"

NOTE
HP CloudSystem Automation Suite
• CloudSystem Matrix: A product that enables IaaS as a private cloud solution as well as

basic application deployment and monitoring.
• CloudSystem Enterprise: A product that enables IaaS as a private or hybrid cloud

solution; supports a single services view, heterogeneous infrastructure, bursting and
bridging to a public cloud if desired, and advanced life cycle management.

• CloudSystem Service Provider: A product that enables public or hosted private cloud;
meant for service providers to provide SaaS; includes aggregation and management of
those services.

HP CLOUDSYSTEM MATRIX1

While Amazon EC2 is an example of public IaaS cloud, HP CloudSystem
Matrix is an important IaaS offering from HP for Enterprises to build private or
hybrid clouds. CloudSystem Matrix is part of the CloudSystem Automation
Suite of products, which includes three IaaS products, namely, CloudSystem
Matrix, CloudSystem Enterprise and CloudSystem Service Provider. CloudSystem
Matrix, as mentioned earlier, is a is private cloud IaaS offering. It allows customers
to perform basic infrastructure and application provisioning and management very
rapidly. CloudSystem Enterprise includes Matrix and advanced IaaS features, such
as the ability to manage hybrid clouds, with support for cloud-bursting (described in
Chapter 6) and the ability to allocate resources from a public cloud to supplement

1Contributed by Mr. Nigel Cook, Hewlett-Packard Laboratories, USA

HP CloudSystem Matrix 53

private cloud resources during a peak period. Therefore, CloudSystem Enterprise
can draw upon resources both from public clouds (such as Amazon) as well as
private resources belonging to the enterprise to create an optimal hybrid service.
CloudSystem Service Provider is targeted at service providers and provides the
infrastructure needed to build a PaaS or SaaS service that can be offered to
customers. This section describes the key technology of all three products, the Cloud-
System Matrix software. Built on market leading HP BladeSystem, the Matrix Oper-
ating Environment, and Cloud Service Automation for Matrix, CloudSystem Matrix
offers a self-service infrastructure portal for auto-provisioning and built-in lifecycle
management to optimize infrastructure, monitor applications and ensure uptime for
cloud and traditional IT. In this section, the basic features of CloudSystem Matrix are
described first, following which there is a description of how a portal such as Pustak
Portal can be set up using the Web GUI interface. CloudSystem Matrix also offers
APIs which allow the infrastructure to be managed programmatically; these APIs are
illustrated with an example in Chapter 8, Managing the Cloud.

Since Amazon EC2 has been described in detail, the description in this section
will be limited to key features of CloudSystem Matrix and internal implementation
details, rather than the user view of IaaS as was done for EC2. This will enable
the reader to appreciate the features that one can expect in a generic IaaS platform
and also give a sense of the potential architecture and implementation of Amazon
EC2 or similar systems.

Basic Platform Features
CloudSystem Matrix [18] is an HP product that combines server, network, storage
and management components in an integrated offering. The inbuilt management
provides a web-based graphical user interface, as well as an exposed web service
API that provides infrastructure as a service (IaaS) capabilities. The fundamental
elements of the CloudSystem Matrix IaaS interfaces are:

1. Service Catalog
2. Consumer Portal (self-service interface)
3. One or more shared resource pools
4. Service template design and authoring tools
5. Administrator Portal containing tools for group, resource capacity, usage and

maintenance management.

In combination, these elements allow infrastructure to be easily consumed and
administered. A typical example is the case of a consumer who wants to create and
administer a service. The consumer can browse the Service Catalog, which lists
the available infrastructure offerings. The catalog entries serve as a blueprint tem-
plate for new service creation by the consumer. To create a new service, the consu-
mer uses the Consumer Portal, which is a self-service interface, to select the
desired catalog entry and nominate the desired shared resource pool to be used as a
source of capacity for the new service. Self-service means, as the name implies,

54 CHAPTER 2 Infrastructure as a Service

that a cloud user who wishes to set up a service can set it up without interacting
with a cloud administrator. Recall from Chapter 1 that self-service is defined by
NIST as one of the fundamental characteristics of a cloud service. The shared
resource pool consists of a collection of similar resources, such as storage LUNs,
and virtual machines. Subsequently, the consumer uses the Consumer Portal to per-
form on-going management operations over the lifetime of the service. This could
be simple activities including re-boot or console access to their environment, or
more advanced activities such as adjusting the resources assigned to the service –
expanding to meeting demand growth, as well as quiescing resources for savings
during low utilization periods.

Entries in the Service Catalog need to be authored, tested and published with
tools to support the process. This is done via the Service Template Designer
Portal and the Workflow Designer Portal. The administrator of the environment
uses the Administrator Portal to manage the groups of consumers, setting poli-
cies associated with their catalog access, and resource pool consumption. Admin-
istrator tools also need to support capacity planning associated both with demand
growth as well as the impacts of maintenance schedules.

CloudSystem Matrix treats all resources in a uniform manner; i.e., as objects
with attributes that are grouped into resource pools. For servers, the virtual servers
can have attributes such as the speed of the CPU, the OS available, and the cost.
Similar virtual servers can be grouped into resource pools of servers. Similarly, vir-
tual storage devices can also have attributes such as their speed, RAID configura-
tion, and cost per byte and can also be grouped into resource pools. Network
configuration allows specification of various policies such as the IP address assign-
ment policy (Static, DHCP, or Auto-allocation). During service instantiation,
resources are allocated from the appropriate pools based upon user specification.

Implementing the Pustak Portal Infrastructure
CloudSystem Matrix can be used for several IaaS usecases [19]. A portal like Pustak
Portal can be implemented using the CloudSystem Matrix service catalog templates
and self-service interfaces previously described. CloudSystem Matrix service tem-
plates are typically authored with a built-in graphic designer and then published into
the catalog in an XML format. It is also possible to create the XML representations
using other tools and import the templates using the CloudSystem Matrix APIs.

Template Design for Pustak Portal
As stated earlier, service template design is the first step in service setup using
CloudSystem Matrix. Subsequently, the template can be used to instantiate
the service [20]. The template design for the Pustak Portal is shown in
Figure 2.17. The design uses a combination of virtual machines and physical servers
to realize the service in order to leverage the flexibility conferred by virtualization.
This is illustrated in Chapter 8 Managing the Cloud where scaling the service up or
down is considered.

HP CloudSystem Matrix 55

The service is realized in a conventional three tier application. In the
example template, the web tier is connected to the Internet and contains six ESX
host VMs running a Linux operating system realized as a set of linked clones.
These VMs share a file system used as a cache for frequently used web data. The
web tier connects to a private service internal network that is used for communi-
cation between the web tier servers and the application and database servers. The
App Server tier contains four HyperV VMs running windows, while the database
tier contains two physical servers also running Windows. The physical server
database cluster shares a 300GB Fibre Channel disk.

Resource Configuration
After template definition, it is necessary to configure the resources (server, storage,
network) used in the service template. These attributes are set in the Service
Template Designer Portal. As an example for a virtual server configuration (see
Figure 2.18), it is possible to set:

• Cost Per Server used for charge back
• Initial and Maximum number of servers in the tier
• Option to deploy servers as linked clones
• Number of CPUs per VM

FIGURE 2.17

CloudSystem Matrix service template example.

56 CHAPTER 2 Infrastructure as a Service

• VM Memory size
• Server recovery automation choice

For the configuration of the physical servers there is an additional configura-
tion parameter regarding processor architecture and minimum clock speed. The
software tab in the designer allows configuration of software to be deployed to
the virtual or physical server.

Similarly for disk configuration, Figure 2.19 shows an example of a Fibre
Channel disk, with the following configuration parameters:

• Disk size
• Cost Per GB used for charge back
• Storage type
• RAID level
• Path redundancy
• Cluster sharing
• Storage service tags

FIGURE 2.18

CloudSystem Matrix server configuration example.

HP CloudSystem Matrix 57

Storage service tags are used to specify the needs for storage security, backup,
retention and availability requirements.

Network configuration allows the service network requirements to be specified
including requirements regarding:

• Public or private
• Shared or exclusive use
• IPV4 or IPV6
• Hostname pattern
• Path redundancy
• IP address assignment policy (Static, DHCP or Auto-allocation)

For example, specifying a private, exclusive-use network would provide the
servers a network isolated from other servers in the environment.

FIGURE 2.19

CloudSystem Matrix storage configuration example.

58 CHAPTER 2 Infrastructure as a Service

Pustak Portal Instantiation and Management
Once the Pustak Portal templates have been created, the self-service interface of
CloudSystem Matrix can be used by consumers to perform various lifecycle opera-
tions on the cloud service. Lifecycle operations are major management operations,
such as creation, destruction, and addition and removal of resources. More specific
details of lifecycle operations as per DMTF reference architecture can be found in
Chapter 10. Consumer lifecycle operations are available either from a browser-
based console or via the published web service APIs. The browser-based console
provides a convenient way for the consumer to view and access their services,
browse the template catalog and create new services and delete existing ones, view
the status and progress of the infrastructure requests they have initiated, examine
their resource pool utilization, and view their resource consumption calendar.

The lifecycle operations include the ability to adjust the resources associated
with a particular service. Referring back to Figure 2.18 as an example, the number
of servers in the web tier was initially specified to be 6 servers, with 12 as maxi-
mum number of servers in the tier. From the self-service portal the consumer has
the ability to request additional servers to be added, up to the maximum of 12
servers. The consumer also has the ability to quiesce and reactivate servers in a tier.
For example, in a tier that has 6 provisioned servers, the consumer can request 3
servers be quiesced, which will cause those servers to be shut down and the asso-
ciated server resource released. However, a quiesced server disk image and IP
address allocation is retained, so that the subsequent re-activate operations can
occur quickly, without requiring a server software re-provisioning operation.

In order to maintain service levels and contain costs, the owner can dynami-
cally scale the resources in the environment to make sure that the service has just
enough server and storage resources to meet the current demand, without the need
to be pre-allocated and have a lot of idle resources. The service scaling can be
performed depending on the number of concurrent users accessing the system. As sta-
ted previously, this can be done manually via the Consumer Portal. In Chapter 8,
Managing the Cloud, there is a detailed description of how this can be accomplished
automatically using the CloudSystem Matrix APIs.

Cells-as-a-Service2

This section describes a novel IaaS technology called Cells-as-a-Service, which is
a research prototype from Hewlett-Packard Laboratories. The Cells-as-a-Service
prototype (simply referred to as Cells for short) was built to support multi-
tenanted services for complex services. In any complex realistic service, there are
various components such as a ticketing service, billing service, logging service,
etc. that may be required to be hosted on an infrastructure service. A unique fea-
ture of the Cells prototype is its ability to define templates for such complex

2Contributed by Dr. Badrinath Ramamurthy, Hewlett-Packard, India.

HP CloudSystem Matrix 59

systems and enable easy deployment. Cells has been evolving, and currently sup-
ports many of the properties mentioned previously. As before, this section first
introduces some simple concepts defined by the platform, explains the usage
through a simple example and then describes the advanced features of the
platform with Pustak Portal.

Introduction to Cells-as-a-Service
In order to understand what the Cells-as-a-Service platform enables, one needs to
look at a cloud service from a different perspective. In any complex realistic ser-
vice, there are various stakeholders and components, which are distinguished to
clarify the exposition:

• Cell is an abstraction for a set of virtual machines interconnected to deliver a
service.

• A Service Template (ST) is a template describing the infrastructure (including
both software and hardware) that is required to realize a service. Since it is a
template, various parameters, such as the number of servers needed, may not
be specified.

• A Service User (SU) is the consumer of a service
• Service Provider (SP): The person who acquires the resources to host the

service, and then configures and runs the service is a Service Provider (SP).
• Compute Service Provider (CSP): The entity from which the service

provider acquires the resources by supplying the Service Template is called
the Compute Service Provider (CSP).

A Cell Specification (CS) specifies the structure of a particular cell that imple-
ments a service. If a particular type of service is instantiated multiple times, it is
useful to have an ST that describes the service, and then derive a CS from it as
needed. In some cases, the SU and the SP are the same, as in the case of an indi-
vidual renting some machines for running a computation. The Amazon EC2 and
the CaaS prototype are examples of CSPs.

Example: Setting Up a Web Portal
To make the ideas from the previous section more concrete, consider a simplified
situation where Cells is used to set up a web service for accessing HTML docu-
ments available on the node.

The Cells Portal is the primary entry point for a user. The first thing that the
user (likely to be an SP) does is to request for a sign-on. Once the user fills out the
requisite details and signs into his account he sees all the resources he has permis-
sions to access. Among these resources are the Cells that the user has created.

For an example, let us assume he is a new customer and has no cells to his name.
To start with, the user first creates a (empty) cell, and then populates it. The process
of creation of a cell makes an initial controller service, specific to the cell, available

60 CHAPTER 2 Infrastructure as a Service

to him. He can now interact with the cell controller to populate the cell. If the user
already has a file containing the specification of a cell (more on that in a moment), he
can use an option to simply submit the specification to the cell. Alternately, the speci-
fication may be graphically created using a drag and drop user interface to create the
elements, their connectivity and specify the element properties.

The cell specification contains the details of all the (virtual) resources used by
the cell. For instance, consider creating a cell with two nodes – one is a web server
and the other runs a backend database for the web server. One way to specify this
is to say that one wants two VMs – a WebVM and a DBVM on a private network
(see Figure 2.20). Both have local disks. The WebVM has an additional interface to
connect to the external world; and the DBVM has an additional large disk to store
the data in the database. Figure 2.20 shows a schematic of this configuration.

Assume for simplicity that the two VMs’ specialized OS images are provided
as two different images already available to the user, just as a specification, and
also that the IaaS console or portal provides a tool to author such a specification
graphically (Figure 2.21). The user then just submits the specification, causing the
service to deploy the required resources and power on the cell.

On the IaaS portal, the user will now see the cell being populated with ele-
ments specified in the specification and also virtual machines popping up to life
along with the disks and the network elements. In a few seconds, the nodes are
up and the user can now log in to the node that has the external facing network
interface. By simply clicking on that node the user can see the externally resolva-
ble name and routable IP address (see Figure 2.21).

The user can also log into the WebVM server and DBVM (via WebVM) and
do any customizations on the server, as needed. The configured services become
ready to use for the SUs as an application service end-point on the WebVM.

The power of template-based service deployment that Cells provides can be
seen by contrasting this to the multiple configurations and scripts that are neces-
sary in a typical IaaS system. These template specifications can also be shared
and therefore are easy to replicate.

Internet
WebVM

DBVM

FIGURE 2.20

An example cell.

HP CloudSystem Matrix 61

Cell Specification for the Example
As previously stated, the user submits a template specification to realize they
require cell contents or infrastructure deployment. This section describes a sample
specification to understand the platform better. The starting point is a skeleton of
the specification for the cell schematically shown earlier in Figure 2.20.

In this example, the specification has an all-encompassing <cell> element that
contains two network elements (XML node network), a storage volume (XML
node volume) and a virtual machine (XML node vm). These three are the common
basic resources in a cell. The network element specifies the name of the network
and optionally one can specify what the subnet id should be. This subnet id is a
resource and is only visible within the cell. Another cell can use the same subnet id
but that will represent a different subnet, limited to that cell. In this example the

FIGURE 2.21

An example interface to the cell.

62 CHAPTER 2 Infrastructure as a Service

two networks have subnet ids 2 and 15, representing the two networks on which the
NICs of the node will sit.

For volume, there is a name associated with the volume and a URL describing
the image location. The local volume webVol is initialized with the contents of the
image specified by the resource urn: sup: vol-0-1-27. Independently, one should
expect that the specified resource has already been made available to the control-
ler with this resource name. Perhaps this is a volume either created by the same
user or by someone else but made visible to this user. In the example this is the
volume containing the OS and any other configuration data that will be the image
on which the WebVM will run.

<?xml version="1.0" ?>
<cell>
– <network def="ext">

<subnet>15</subnet>
</network>
– <network def="net2">

<subnet>2</subnet>
</network>
– <volume def="webOSVol">

<imageUrl>urn:sup:vol-0-1-27</imageUrl>
<size>256</size>

</volume>
– <vm def="webVM">

<vbd def="vbd0">
<volUrl>sup:/webOSVol</volUrl>

</vbd>
<vif def="vif0">

<netUrl>sup:/ext</netUrl>
<external>true</external>

</vif>
<vif def="vif1">

<netUrl>sup:/net2</netUrl>
</vif>

</vm>
...
</cell>...

The last item in this skeleton is a virtual machine. This VM is for the WebVM
of the example. The VM specification simply mentions that the VM’s block device
should be connected to the volume webVol, mentioned earlier, and that the two
interface NICs vif0 and vif1 should be connected appropriately to the network
elements mentioned earlier. Further, the specification on the interface qualifies the
interface vif0 to be externally routable.

Clearly, this only specifies part of the whole specification for the cell shown in
Figure 2.20. The DBVM and its two volumes (for the OS and the database)
would also need to be specified. The NIC on the DBVM would also connect to

HP CloudSystem Matrix 63

net2, allowing the two VMs to communicate. With the addition of these elements,
the specification would be complete.

Note that only a few attributes, such as size of volumes and the external con-
nectivity attribute for a network interface, have been shown. There are many more
attributes that may be specified, such as the trailing part of the IP address of the
individual interfaces, called the host part. The specification may also contain
elaborate rules that describe which VMs in which cells may connect over the net-
work. There are also rules that govern disk image sharing.

Multi-tenancy: Supporting Multiple Authors to Host Books
The previous section showed how a simple cell is created. This section contains a
more elaborate example. This example also shows how a cell may be flexed-up
by invocations from applications running in VMs within a cell.

Assume that Pustak Portal (a service provider or SP) is creating a service to
give authors the ability to create portals for their books and provide a search ser-
vice for anyone who wishes to search for terms in the author’s portal. Thus the
author’s portal would contain the books written by the author. In addition, it must
also contain an index which can be searched. The example describes how con-
struction of this complex system would be automated using Cells.

Figure 2.22 illustrates the structure of the kind of cell that is needed. Assume
that the service provider starts with a specification for a cell with two VMs. One
is the Controller Service VM (CVM) that hosts the main service which is the
interface to prospective authors; the second, the Search Engine VM (SVM)
which hosts the service that has indexed content of author books and provides
users a search service over the books’ contents. This specification looks very
much like the specification for the simple cell in the earlier example, but has one
main difference – both VMs are in external facing as well as internal facing sub-
nets. Thus, each of the VMs has two NICs. See Figure 2.22a.

(a) (b)

CVM

SVM

SVM

CVM

AVM AVM

Internet

Internet

FIGURE 2.22

Author web site cell. Structure of the cell to support websites for each author.

64 CHAPTER 2 Infrastructure as a Service

The author acquires a web site by making a web request to the CVM via its
portal. For the application in the CVM to make a request to the controller so that
the request is honored, the application needs to hold an appropriate certificate –
this is the certificate provided by Cells to the SP when creating the SP user. The
result is that an Author VM (AVM) gets created on the backend and returns an
Author URL (AURL) by which he can access his web site (which is inside the
AVM). Among other information, the negotiation between the CVM portal and
the author to create an author web site includes creating certificates to authenticate
the author to the portal in the AVM. This is at the application level and is handled
entirely by the logic of the application in the CVM. Any method may be used by
the CVM service to establish identity with the service in the AVM. Figure 2.22(b)
shows the cell after two AVMs have been added.

Now the author uses the AURL to do anything that the service allows. Among
them will be the ability to upload the book content. Another feature will be the
ability to contact the SVM and post a request to it to index its contents for any
end user search. Also note that every author gets a new AVM – a nice complex
use case that requires multi-tenancy at the infrastructure level that this platform
handles very well. So, the cells architecture is not just an IaaS but enables custo-
mized cloud services to be built over it.

Note that all the logic to accept requests for a web portal from an author allows
the author the facility to edit his web portal; the logic to access and index the books
and other such features are logic embedded in the corresponding web services, which
are already part of the OS image that those corresponding AVMs are created from.

The initial specification submitted to create the cell contains the CVM and
AVM specifications along with the required subnets and volumes that are sketched
in Figure 2.22(a). At some point in the web application logic of the CVM, a deci-
sion is taken to create an AVM. At this point it, the CVM, dynamically submits a
specification to create an AVM from the corresponding image. The Cells architec-
ture provides a way of updating a cell specification by submitting a specification
change or a delta to the controller. The delta is a specification that specifies what
has changed. This specification is shown in the following code segment.

<?xml version="1.0" ?>
<delta>
– <set>

<path> volAVM02a </path>
<spec>

<volume>
<imageUrl>urn:sup:vol-0-1-30</imageUrl>
<size>250</size>

</volume>
<spec>

</set>
– <set>

<path> volAVM02b </path>

HP CloudSystem Matrix 65

<spec>
<volume>
<imageUrl>urn:sup:vol-0-1-35</imageUrl>
<size>1000</size>
</volume>

</spec>
</set>
– <set>

<path> vmAVM02</path>
<set>
<vm>

<vbd def="vbd0">
<volUrl>sup:/volAVM02a</volUrl>

</vbd>
<vbd def="vbd2">

<volUrl>sup:/volAVM02b</volUrl>
</vbd>
<vif def="vif0">

<netUrl>sup:/net2</netUrl>
</vif>
<vif def="vif1">

<netUrl>sup:/net15</netUrl>
<external>true</external>

</vif>
</vm>
</set>
</delta>

In this specification, a new VM has been added that has two disks (volAVM02a
and volAVM02b). One volume will be used for the OS and the web service and the
other to host the book and all other content for the portal. The AVM, like the
CVM and SVM, has NICs on both the predefined internal and external subnets
(net2 and net15).

Isolation of Multiple Tenants
One can optimize the solution by enhancing the cell design (implementation of
the backend) in several ways too. One option is to ensure that each AVM is not
a new VM in the existing cell, but is a separate cell on its own. Rules can also
be added to allow only communication between the SVM and the corresponding
AVM. The advantage of this model is that since each VM is in a separate cell, if
one AVM is compromised and becomes a rogue VM for some reason, it cannot
affect the other AVMs by creating spurious traffic on any of the attached subnets.
Then one can even give full root access to the VM itself to the author and let
him enhance it in any further way he wishes. In this scenario, probably he will
host a bunch of different applications unconstrained by what the default AVM
provides.

66 CHAPTER 2 Infrastructure as a Service

Load Balancing the Author Web Site
Another interesting enhancement to the cell could be to allow load balancing.
Consider the case where it is necessary to balance the load coming into an AVM.
Among other things, load-balancing requires triggering the submission of a delta
specification to the controller service to add an AVM, just as in the case of
adding a new author VM. This design is explained in greater detail next.

Assume that the WebVM in Figure 2.20 is overloaded, perhaps because
of all the processing it has to do. One of the advantages of using an IaaS is
that the infrastructure may be dynamically flexed to meet performance require-
ments. To do this one may modify the infrastructure to look as described in
Figure 2.23.

Here the load is arriving into the system at the node LBVM that is a load-
balancer. The load-balancer then forwards the request to one of two WebVMs
as shown in the figure. The reverse proxy facility as provided in, for example,
the Apache web server supports this. In a simple case, the load-balancer does a
round robin forwarding of requests. Further, when the load at all servers reaches
a point that the SLA drops, the logic may submit a request to the underlying
cell to bring up a new node running a WebVM to forward the requests to. In
order to do this the LB needs to submit a delta request to add a server. One can
write out the delta specification by looking at the delta specification in the pre-
vious section.

Note that application level logic is needed to reconfigure the LB so that it
recognizes that the new node is a valid target for forwarded traffic. It is possible
to use a similar delta to specify the removal of a WebVM in case the load is low

Internet LBVM

WebVM1

WebVM2

DBVM

FIGURE 2.23

A load-balancing configuration.

HP CloudSystem Matrix 67

enough that it can be handled by one fewer WebVM. In that case, the delta for
deleting the identified node and its volume is shown here:

<delta>
<set>

<path> WebVM2 </path>
<spec> </spec>

</set>
<set>

<path> WebOSVol2 </path>
<spec> </spec>

</set>
</delta>

Another popular way to flex scale-out the web service is to add a WebVM and
then use infrastructure using DNS-based load balancing. Details of how the DNS
server responds to requests and balances loads is beyond the scope of this descrip-
tion and can be found in DNS Name Server Load Balancing [21].

In some cases it is the data service that is the bottle neck and not the web server.
One way to address this is to have data that is distributed across nodes, as in the case
of a distributed hash table or a distributed column store. In this case, there is no sepa-
rate DB server. The LB makes a decision on where to forward the request depending
on the data being requested. When a node is created by flexing up, the LB addition-
ally needs to redistribute data so that the new node is also used. Consistent hashing
techniques may be used to minimize the amount of data movement.

With that design, infrastructure service provides the core ability to flex the
infrastructure. If this is coupled with the right application logic to restart applica-
tion instances and allows some configuration and possibly data movement to actu-
ally distribute the load, then it makes a highly scalable Pustak Portal built almost
as a platform to enable authors to host their book web sites.

In summary, the Cells technology and research lays a strong emphasis on
simplicity of interface and modularity of design to build a reliable, scalable imple-
mentation of Infrastructure as a Service. Note the interesting fact that all the opera-
tions on the cell can be done just by posting appropriate specifications to modify
the resources within a cell. The whole process is simply specification driven. While
this section focused on providing a user perspective of the Cells prototype, the
reader may wish to look at associated HP Labs Technical Reports [22, 23, 24] to get
an idea of some internal workings of the networking and storage aspects.

SUMMARY

As detailed in this chapter, the IaaS cloud computing model offers virtual comput-
ing resources (servers, storage and networking) as a service. The advantage of this
model is the flexibility it offers in allowing customers to create any desired com-
puting environment by installing software of their choice. The disadvantage of

68 CHAPTER 2 Infrastructure as a Service

this model compared to PaaS and SaaS models is that the burden of upgrading (in
general, managing) the software falls upon the user. Since the IaaS model offers
virtual computing resources that mimic a physical data center, the techniques used
to upgrade software in a traditional data center can be used.

The IaaS services discussed in this chapter have two major functionalities: ser-
vice creation, and service management. Important functions in service management
include load balancing, failover, and monitoring and metering. Service creation in
Amazon EC2 can be done using the AWS console for simple use cases. For more
complex configurations involving S3 and EBS, one can use programming or
scripting methods to set up the infrastructure needed. Service creation in HP Cloud-
System Matrix is a two-step process. First, the service can be defined via the
Service Catalog, Service Template Designer Portal and the Workflow Designer
Portal These definitions are then saved in XML format in the Service Catalog,
where they can be used for instantiating the service. The next step after service
definition in CloudSystem Matrix is service instantiation. Similar to Amazon EC2,
the Consumer Portal can be used by a naïve user to select an existing service tem-
plate (say, 3-tier architecture) and instantiate it using resources from a resource
pool. This console-based usage can be used to build or replicate complex infrastruc-
tures and is not just limited to simple templates.

In Amazon EC2, service definition is accomplished through the AMI defini-
tion, which includes specification of the software and hardware needed for the ser-
ver. EC2 offers a wide variety of standardized computing environments (e.g.,
Windows, Linux, Solaris, Ruby on Rails), as well as a number of popular soft-
ware packages (e.g., Hadoop, Apache, and DB2). This software environment can
be customized, either by installing additional software on the EC2 virtual systems,
or by importing a virtualized VMWare server image from the customer’s servers
as a custom AMI. The AMI also specifies additional EBS virtual disks needed.
Following this, the AMI can be instantiated on servers of pre-specified size (e.g.,
small). After the AMI is instantiated, the software on the AMI can be configured
(if needed) manually or using scripts.

In addition to the AMI, EC2 also allows storage (via S3 files, SimpleDB – a
key-value store, or RDB – a relational database) to be associated with EC2
instances. Networking allows the creation of two types of addresses: private
addresses for communication with EC2, and public IP addresses for external com-
munication. Additionally, hybrid clouds can be created using EC2’s Virtual Pri-
vate Clouds, which creates a VPN that encompasses resources from an enterprise
data center as well as EC2.

Since Amazon EC2 is a public cloud, it supports the notion of regions, which
are specific geographic locations from which the needed computing resources can
be drawn. This is for the purpose of performance or satisfying legal requirements.
In CloudSystem Matrix as well it is possible to partition the resource pool into
geographic regions, and specify allocation from specific regions.

Service management is the other important factor in IaaS offerings. Load balan-
cing and failover is an important feature of service management. In EC2, load

Summary 69

balancing and scaling can be accomplished by Elastic Beanstalk [16] and the Elastic
Load Balancing service, which will distribute incoming requests over multiple ser-
vers. The load balancers also support the notion of a session, which may be applica-
tion-defined. Load balancing and scaling in CloudSystem Matrix is accomplished
through APIs, as described later in Chapter 8, titled Managing the Cloud.

Finally, the Cells architecture is a very interesting piece of research, which
enables very easy creation of complex infrastructure – using just a simple XML
specification that can be authored on a graphical user interface as well. This
approach enables one to create a complex infrastructure and share and replicate
the same as another instance. The example also described how one can even use
the platform to host multi-tenanted service providers using the Pustak portal. This
is a promising research in the right direction of enabling simplified deployment
and management of cloud infrastructure.

Storage as a Service acts as an important complementary functionality by
providing highly available and reliable persistent storage. Multiple services from
Amazon Web Services were studied, and those provided diverse interfaces – block
device interface (EBS), database interface(RDS), key-value stores (SimpleDB) or
simple file system (S3) interface. These and other storage platform services are
studied in the section describing storage aspects of PaaS in Chapter 3. Additional
background concepts to enable efficient use of cloud storage are available in
Chapters 5 and 6.

IaaS models allow virtual resources in the cloud to be provisioned for enter-
prise applications. These can, if desired, be an extension of the enterprise data
center leading to a hybrid cloud model. The IaaS model, therefore, is suitable for
enterprises that consider the cloud to be a natural extension of their data centers.
More in-depth discussion on how one can use the IaaS platforms to address the
scalability, availability and other technical challenges of the cloud can be found in
Chapter 6.

References
[1] Amazon Simple Storage Service (Amazon S3), http://aws.amazon.com/s3 [accessed

16.10.11].
[2] s3cmd: command line S3 client, http://s3tools.org/s3cmd [accessed 10.11].
[3] Standalone Windows .EXE command line utility for Amazon S3 & EC2, http://s3.

codeplex.com/ [accessed 10.11].
[4] API Support for Multipart Upload, http://docs.amazonwebservices.com/AmazonS3/

latest/dev/index.html?uploadobjusingmpu.html [accessed 01.11].
[5] Amazon Elastic Compute Cloud User Guide, http://docs.amazonwebservices.com/

AWSEC2/latest/UserGuide/ [accessed 10.11].
[6] Amazon Elastic Compute Cloud Command Line Reference, http://docs.amazonweb

services.com/AWSEC2/latest/CommandLineReference/ [accessed 01.11].
[7] Amazon EC2 API Tools, http://aws.amazon.com/developertools/351?_encoding=

UTF8&jiveRedirect=1 [accessed 10.11].

70 CHAPTER 2 Infrastructure as a Service

http://aws.amazon.com/s3
http://s3tools.org/s3cmd
http://s3.codeplex.com/
http://s3.codeplex.com/
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?uploadobjusingmpu.html
http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?uploadobjusingmpu.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference/
http://docs.amazonwebservices.com/AWSEC2/latest/CommandLineReference/
http://aws.amazon.com/developertools/351?_encoding=UTF8%26jiveRedirect=1
http://aws.amazon.com/developertools/351?_encoding=UTF8%26jiveRedirect=1

[8] EC2 Introduction, http://aws.amazon.com/ec2/ [accessed 10.11].
[9] EC2 FAQs, http://aws.amazon.com/ec2/faqs/ [accessed 10.11].
[10] Elastic Load Balancing, http://aws.amazon.com/elasticloadbalancing/ [accessed 10.11].
[11] Amazon Virtual Private Cloud, http://aws.amazon.com/vpc/ [accessed 10.11].
[12] AWS Security Best Practices, http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_

Whitepaper.pdf; 2011 [accessed 10.11].
[13] Fernandes R. Creating DMZ configurations on Amazon EC2, http://tripoverit.blogspot.

com/2011/03/creating-dmz-configurations-on-amazon.html [accessed 10.11].
[14] Ruby Programming Language, http://www.ruby-lang.org/en/ [accessed 10.11].
[15] http://docs.amazonwebservices.com/AmazonS3/latest/API/ [accessed 10.11].
[16] AWS Elastic Beanstalk, http://aws.amazon.com/elasticbeanstalk [accessed 10.11].
[17] Amazon Machine Images (AMIs): Amazon Web Services, Amazon Web Services,

http://aws.amazon.com/amis [accessed 10.11].
[18] HP CloudSystem Matrix, http://www.hp.com/go/matrix [accessed 10.11].
[19] Server and Infrastructure Software - UseCases, http://www.hp.com/go/matrixdemos

[accessed 10.11].
[20] HP Cloud Maps, http://www.hp.com/go/cloudmaps [accessed 10.11].
[21] DNS Name Server Load Balancing, http://www.tcpipguide.com/free/t_DNSName

ServerLoadBalancing.htm [accessed 10.11].
[22] Cabuk S, Dalton CI, Edwards A, Fischer A. A Comparative Study on Secure Network

Virtualization, HP Laboratories Technical Report, HPL-2008-57, May 21, 2008.
[23] Edwards A, Fischer A, Lain A. Diverter: a new approach to networking within virtualized

infrastructures. In: Proceedings of the first ACM workshop on research on enterprise
networking, WREN ’09, 2009. p. 103–10.

[24] Coles A, Edwards A. Rapid Node Reallocation Between Virtual Clusters for Data
Intensive Utility Computing. IEEE International Conference on Cluster Computing 2006.

References 71

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/faqs/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/vpc/
http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
http://tripoverit.blogspot.com/2011/03/creating-dmz-configurations-on-amazon.html
http://tripoverit.blogspot.com/2011/03/creating-dmz-configurations-on-amazon.html
http://www.ruby-lang.org/en/
http://docs.amazonwebservices.com/AmazonS3/latest/API/
http://aws.amazon.com/elasticbeanstalk
http://aws.amazon.com/amis
http://www.hp.com/go/matrix
http://www.hp.com/go/matrixdemos
http://www.hp.com/go/cloudmaps
http://www.tcpipguide.com/free/t_DNSNameServerLoadBalancing.htm
http://www.tcpipguide.com/free/t_DNSNameServerLoadBalancing.htm

This page intentionally left blank

CHAPTER

3Platform as a Service

INFORMATION IN THIS CHAPTER:

• Windows Azure

• Google App Engine

• Platform as a Service: Storage Aspects

• Mashups

INTRODUCTION

The previous chapter provided a description of Infrastructure as a Service (IaaS),
the first model of cloud computing that provides hardware resources on demand by
offering reliable compute and storage resources as a cloud service. This chapter
looks at Platform as a Service (PaaS), the second model of cloud delivery. This
model provides a platform on which users can directly develop and deploy their
applications without worrying about the complexity of setting up the hardware or
system software. PaaS systems usually support the complete life cycle of an
application – starting from helping in application design, PAPIs for application
development, supporting the build and test environment as well as providing the
application deployment infrastructure on cloud. Additional features during applica-
tion execution for persistent data usage, state management, session management,
versioning and application debugging are also provided by certain PaaS solutions.

IaaS offerings provide only raw computing power, and customers purchase
instances of virtual machines, install the requisite software, and host their applications
on them. In contrast, PaaS offerings provide completely managed platforms for
applications hosted on the cloud. PaaS customers manage instances of applications –
specifying the details of instances of the application required and the cloud service
will guarantee that the instances will be created and maintained without user interven-
tion. For example, a PaaS solution will ensure the availability of the application
despite downtime of the underlying virtual machine by automatically creating a new
instance of the application on a new virtual machine when the machine goes down. In
order to facilitate automated application management, PaaS solutions provide a more
restricted environment than IaaS for its customers, with fewer choices for operating
systems and programming environments. However, it clearly results in lesser
management burden on the customer.

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00003-2
© 2012 Elsevier, Inc. All rights reserved.

73

http://dx.doi.org/10.1016/B978-1-59749-725-1.00003-2

PaaS systems can be used to host a variety of cloud services. They can be used
by online portal-based applications like Facebook that need to scale to thousands
of users. They can be used by a startup that wants to host their new application in a
Software-as-a-Service model without any upfront cost for hardware or system
software, as well as benefit from the flexibility in scaling to a large number of
users. PaaS systems can also be used for massively parallel computations typically
found in High Performance Computing applications and Internet-scale file hosting
services. In addition, enterprises can deploy their Line-of-Business applications in
the cloud, taking advantage of the scale and availability while still maintaining
security and privacy of data.

This section takes a deeper look at a few popular PaaS systems, namely Windows
Azure Platform from Microsoft and Yahoo! Pipes, for developing mashup applica-
tions, and Hadoop, an Internet-scale big data platform. A separate section in this
chapter deals with the storage aspects of Platform as a Service, specifically detailing
a few cloud services from IBM that provide data-oriented platform services
(pureXML and Data Studio) as case studies. As in earlier chapters, the application
developer perspective of PaaS is described first, so as to provide a quick guide to get
the developer started on the platform. Next, the chapter describes the underlying tech-
nology of PaaS systems and the components that make up the platform to enable the
developer to create efficient applications by leveraging the more advanced features of
the PaaS solution. The reader is encouraged to study Chapter 5 to get some deeper
insights into application design and development for the Cloud, by introducing new
paradigms of application design that is best suited for Cloud platforms.

WINDOWS AZURE1

The Azure Services Platform is a popular application platform for the cloud that
allows Windows applications and web-services to be hosted and run in Microsoft
datacenters. A simplistic view of Azure can be as a cloud deployment platform
for applications developed for Windows using .NET. While Azure is primarily
designed for PaaS capabilities, it also includes certain features for Data-as-a-
Service (DaaS) and Infrastructure-as-a-Service (IaaS). However, this section
focuses primarily on the PaaS features of the platform and gives only a high-level
overview of the DaaS and IaaS features of Azure.

The rest of the section is organized as follows: First, a simple “Hello World”
example that shows how to get started with Windows Azure is presented. Next, the
example is made slightly more complex by showing how to pass messages between
two of the application components – one of the primary ways of integrating compo-
nents in Azure. The second example is also used to illustrate how to test and debug
under Azure. This is followed by an overview of the basic and advanced features of
Windows Azure, such as Azure storage, queues, tables and, security.

1Contributed by Mr. Gopal Srinivasa from Microsoft Research, India.

74 CHAPTER 3 Platform as a Service

The examples and screenshots in this section are based on version 1.2 of the
Windows Azure SDK. They may differ slightly for newer versions, whose docu-
mentation can be found on the Microsoft web site [1]. For decision makers contem-
plating the move to Windows Azure, the web site also provides a Guide for Decision
Makers and a TCO calculator that can be used as a pricing guide. The business end
of Windows Azure is presented in The Business of Windows Azure Pricing [2]. The
portal and the PDC site also provide white papers and talks from customers on their
experiences moving applications to the cloud.

A “Hello World” Example
The usage of the Windows Azure service is best demonstrated with a simple example.
This example shows how to develop a Web application that displays a custom home-
page, accepts the visitor’s name, and welcomes him/her. To simplify the development
of this application, Visual Studio templates included in the freely downloadable [3]
Visual Studio Web Developer 2010 Express edition are used.

The first step is to download and install development tools required to develop
Azure applications. At the time of this writing, the Windows Azure SDK with all
required software was available for download free of cost from http://www.microsoft
.com/windowsazure/learn/get-started/?campaign=getstarted.

Like any other cloud-hosted application, Windows Azure applications typically
have multiple instances running on different virtual machines. However, develo-
pers need not create nor manage these virtual machines explicitly. Instead, devel-
opers just write applications either as a Web role and/or Worker role, and tell
Windows Azure the number of instances of each role that should be created.
Windows Azure silently creates the requisite number of virtual machines, and
hosts instances of the roles on them. The two roles supported by Azure depict the
common types of applications that are hosted on .NET systems. The Web role
mirrors Web applications that are hosted on IIS servers and provide external inter-
activity while the Worker role mirrors the heavy-duty processing that is typically
done by Windows services and applications. These roles are described in more
detail in a subsequent section. A typical Azure application consists of multiple
components (Web and Worker roles) that exchange messages and that forms a
fundamental design paradigm used in Azure.

The first step in developing an application is to create a Visual Web Developer
cloud project. For this, the “File” menu on Visual Studio is used to select “New
project”, and then the option “Cloud” is selected in the left pane with the option of
“Windows Azure Cloud Service.” Figure 3.1 shows a screenshot of this process.
On clicking “OK” in the dialog box, the developer is presented with another dialog
that offers the choice of roles (Web and Worker roles briefly described above).
For this example, one Web role and one Worker role will be selected as shown in
Figure 3.2.

Note that the number of roles selected here is independent of the number of
instances of the roles that can be created on the cloud. Windows Azure will allow

Windows Azure 75

http://www.microsoft.com/windowsazure/learn/get-started/?campaign=getstarted/
http://www.microsoft.com/windowsazure/learn/get-started/?campaign=getstarted/

creation of multiple instances of any role that is to be deployed on the cloud. How-
ever, at the time of this writing, a single application could only have a maximum of
25 roles defined.

After the roles are selected, Visual Studio automatically creates two projects
for developing each role. Additionally, a Visual Studio Cloud Service Solution is

FIGURE 3.1

Creating a new Cloud project in Azure Visual Studio.

FIGURE 3.2

Choosing Web and Worker roles.

76 CHAPTER 3 Platform as a Service

created for the two Azure roles, as seen in the Figure 3.2. A Visual Studio Solution
is a collection of related projects grouped as logical entities. The Web role is essen-
tially an ASP.NET web application, with additional features for cloud-based deploy-
ment. The Worker role is a simple C# program. While for this example C# will be
used as the programming language, software development kits for Java and Php are
available at http://www.windowsazure4j.org/ [4] and http://phpazure.codeplex.com/
[5], respectively. Additionally, VisualBasic and IronRuby can be used. A full list of
supported programming languages can be found in [6].

The next step is to modify the “Default.aspx” page to add a custom message as
shown in Figure 3.3. It is now possible to build the solution to create a simple
Azure application which consists of two files – a service package (*.cspkg) that
contains the binaries, and a service configuration (*.cscfg) that is used to config-
ure the application. One can test this application through Visual Studio by using the
“F5” key which brings up the web site, which at this point just shows a welcome
message. The first Azure application is ready! Additional simple examples can be
found in many books and sites [7].

Example: Passing a Message
In a cloud environment, message passing between components is a basic function-
ality, since cloud applications are built from simpler components that communi-
cate with each other via messages. The following section shows how messages
can be passed from one component to another. For this example, the Web role
will prompt the user for his/her name and pass that to the Worker role and print
back the result got from the Web role. For this, first some additional markup is
introduced in the default ASPX page to add a simple submit button with an input
text box and some additional labels, as shown in the following snippet.

FIGURE 3.3

Modifying the default page to write a custom message.

Windows Azure 77

http://www.windowsazure4j.org/
http://phpazure.codeplex.com/

<asp:Label ID="MsgLabel" runat="server"> Enter your name and click
submit. </asp:Label>

<asp:TextBox ID="NameTextBox" runat="server" > </asp:TextBox>
<asp:Button ID="Button1" runat="server" CausesValidation="true" Text =
"Submit" OnClick="OnSubmitBtnClick" />

<asp:Label ID="ResponseLabel" runat="server"> </asp:Label>

The input string from the default page is transmitted from the Web role to the
Worker role and in return, the worker sends back a string (may be the current time).
For this, the handler OnSubmitBtnClick for the “Submit” button needs to pass the
input string as a message to the Worker role. To enable this communication between
the Web role and Worker role, it is necessary to use the message-passing features of
Azure. Message passing on the Azure cloud can be done through queues that
form part of Azure storage. Other different types of Azure storage are described in
subsequent sections. Here, the example code will describe simple usage of some
APIs for managing queues. Following is an implementation of the OnSubmitBtnClick
method.

protected void OnSubmitBtnClick(object sender, EventArgs e)
{

//Select the storage account to use. Account information is specified
in the
//service configuration file, as a key-value pair. Default behavior is to
//use the dev store
CloudStorageAccount account = CloudStorageAccount.
FromConfigurationSetting("AzureStorageConnectionString");
//Now we create a client that can operate queues on the account.
CloudQueueClient client = account.CreateCloudQueueClient();

To use the message-passing APIs, it is necessary to create a storage
account object, and that is specified in the configuration file with the key
AzureStorageConnectionString. Among other things, the application configuration
file stores such settings used by the program in the form of key-value pairs. The
value associated with the above key is used as the storage account connection string.
During development, this value can be set to use development storage to facilitate
tracing/debugging of the program. In production, this should be set to the storage
account of the developer.

Next, it is necessary to get a reference to the queue to transmit messages to the
worker. This is needed for the two-way communication between the Worker role
and Web role introduced for this example. For this, two queues are used, the first
one named webtoworker and the second named workertoweb. This is accomplished
by the GetQueueReference method, which returns a reference to the queue. The
CreateIfNotExist() function is used to create the queue when the code is executed
for the first time. Attempting to access a queue without creating it will throw an
exception.

78 CHAPTER 3 Platform as a Service

//We request access to a particular named queue. The name of the queue
//must be the same at both the web role and the worker role.
//container name must be lowercase!
webToWorkerQueue = queueClient.GetQueueReference("webtoworker");
//Create the queue if it does not exist.
webToWorkerQueue.CreateIfNotExist();
workerToWebQueue = queueClient.GetQueueReference("workertoweb");
workerToWebQueue.CreateIfNotExist();

It is now possible to add a message to the queue for the Worker role – simply
send the string typed by the user as the message to the Worker role. This message
is added to the webtoworker queue as shown in the following code snippet.
Messages can be objects of any serializable type.

webToWorkerQueue.AddMessage(new
CloudQueueMessage(this.NameTextBox.Text));

The sent message will now reach the Worker role. To process the response
from the worker, it is necessary to listen to the messages on the workertoweb
queue. The following code snippet demonstrates the process. The code loops
while checking the queue for an available message. As the name suggests, the
PeekMessage() method checks if a queue has an unprocessed message. If such a
message exists, it returns the message, otherwise it returns null. The loop breaks
once the worker has written a message into the workertoweb queue.2

//Wait for a response from the worker
while ((response = workerToWebQueue.PeekMessage()) == null)

;
//There is a message. Get it.
response = responseQueue.GetMessage();
if (response != null) {

//Show the response to the user
ResultLabel.Text = response.AsString;
//Always delete the message after processing
//so that it is not processed again.
responseQueue.DeleteMessage(response);

}

The reply from the queue is obtained by using the GetMessage() function.
There are two differences between the GetMessage() and PeekMessage()
functions:

i. the former is a blocking function that blocks if the queue is empty, while the
latter is a non-blocking function

2Version 1.5 of the Windows Azure SDK has introduced many additional features to message
handling.

Windows Azure 79

ii. the GetMessage() function marks the messages as invisible to other roles
accessing the queue, which is similar to obtaining an exclusive lock on the
message for a particular time period, while the PeekMessage() does not.

Once the message is retrieved, we delete the message from the queue, so that
the same message is not processed twice, and show the reply to the user by set-
ting the ResultLabel field to the text returned by the Worker role. Note that we
can use the AsString function because we know that our messages are strings.
For other, custom data types, we would have to invoke the AsByte property,
which returns a serialized representation of the message, and deserialize the bytes
returned into the object. Of course, for real-world applications, it is better to use
AJAX or an ASP.NET UpdatePanel to poll for arrived messages instead of wait-
ing indefinitely as the previous example does. That would give a better user
experience as the backend request to the Worker role will not block.

NOTE
.NET terminology used
• Property: A property is a member, usually with public access, that provides a flexible

mechanism to read, write, or compute the value of a private field of a class.
• Serialization: Process of converting an object into a string or binary form for transmission

over a network or to save to disk. The reverse process of creating an object from such a
saved copy is de-serialization.

Now, the Worker role in the example is studied in detail. The Worker role has
to monitor the incoming message queue for new messages, and when it gets a
message, it has to respond back with a message, say, the server time. So, in the
example, the worker appends the server time to the received message, and adds it
to the outgoing queue.

Recall that Visual Studio has already generated a template Worker role. This tem-
plate has two public methods: OnStart and Run. The OnStart() method is invoked
by the runtime when an instance of the Worker role is started. This is for one-time
startup activity, such as creation of the two message queues. The Run() method is
also invoked once and it does the processing for the Worker role. Please note that the
Run() method should never return – the Azure agent detects if the role terminates (be
it with an exception or regular function return) and starts a new instance of the
Worker role. This feature of the Azure agent ensures availability of the application
and minimal downtime of the cloud-hosted application.

The Run() method for the example is as follows:

Trace.WriteLine("HelloAzureWorkerRole entry point called",
"Information");
while (true) { //Get the next message from the incoming queue

CloudQueueMessage message =
webToWorkerQueue.GetMessage();
if (message != null) {

80 CHAPTER 3 Platform as a Service

//Say, the message is the username. Other fields in the message
//like ID help map responses to requests.
string userName = message.AsString;
Trace.WriteLine("Got message with user: " + userName + " id: " +
message.Id, "Information");
//Create the response to the web-role.
CloudQueueMessage messageToSend = new CloudQueueMessage("Hello, " +
userName + ". The server time is: " + DateTime.Now.ToString());
//Send the message to the web role.
workerToWebQueue.AddMessage(messageToSend);
Trace.WriteLine("Sent message: " + messageToSend.AsString + " with
id: " + messageToSend.Id, "Information");
//delete the message that we are going to process. This prevents other
workers from processing the message.
webToWorkerQueue.DeleteMessage(message);

}

The infinite while loop to get the message is typical of all Worker roles, indi-
cating that the function should never terminate. Unlike the Web role, the Worker
role directly calls the GetMessage() function to look for new messages. The
Worker role can block because it does nothing until it gets a message. The
remaining code is similar to that of the Web role. The worker reads requests from
the webtoworker queue, creates a string with the server time and adds it to the
workertoweb queue to send to the Web role.

This concludes the walkthrough of most of the example code for both Worker
and Web roles.

One additional step is required – a ConfigurationSettingPublisher must be
set for both the Web role and Worker role so that the correct configuration files are
read. The following lines of code are added to the Application_Start function
(which is the event handler that is invoked when an ASP.NET application is started
by the web server). This function is present in the Global.asax.cs file (which is an
auto generated file that contains global declarations in an ASP.NET project) in the
Web role project, and to the OnStart() function in the WorkerRole.cs file in the
Worker role project.

CloudStorageAccount.SetConfigurationSettingPublisher((configName,
configSetter) =>
{

string connectionString;
if (RoleEnvironment.IsAvailable) {

connectionString = RoleEnvironment.
GetConfigurationSettingValue(configName);

}else {
connectionString = ConfigurationManager.AppSettings[configName];

}
configSetter(connectionString);

});

Windows Azure 81

Azure Test and Deployment
The application developed in the previous example will be used for demonstrating
testing and debugging features of Azure. When the cloud service is started in
debug mode, Visual Studio brings up the window shown in Figure 3.4. The left
pane shows the result of the program (Web role) and the right pane shows the
source code of the application. One can add breakpoints, step through the code,
and watch variables just as is done in a regular Visual Studio project. Please note
that Visual Studio must be started in administrator mode to debug cloud applica-
tions. The application is now running on the local machine on top of a Windows
Azure emulator known as the development fabric. The development fabric pro-
vides the functionality of Windows Azure on the local machine so that users can
debug the logic of their services in the familiar environment provided by Visual
Studio.

The final result of the application is shown in Figure 3.5, where the Web role
received an input string from the user, sent that to the Worker role, and then
received back a server timestamp to display to the user.

One can also view the message queues and trace statements for both Web role
and Worker role. For this, the development fabric view shown in Figure 3.6 is
used. One can select a role on the left pane and see the messages and trace output
for the selected role on the right pane. A more detailed description about the
development fabric from a technical standpoint is in the next section.

FIGURE 3.4

Side-by-side windows showing live debugging of an Azure application.

82 CHAPTER 3 Platform as a Service

FIGURE 3.5

The output of the sample Azure application.

FIGURE 3.6

Trace messages of the Worker role shown in the development fabric UI.

Windows Azure 83

Deploying Azure applications: So far, the development and testing of the
new application happened on the local machine. The same now needs to be
deployed on the cloud. For this, one needs to obtain an Azure subscription from
the Microsoft Online Customer Portal [8]. The process of obtaining the subscrip-
tion is documented on Microsoft Technet [9].

Once a subscription is created, a developer login is available to the Windows
Azure developer portal at http://windows.azure.com, where the developer can create
a new project. Figure 3.7 shows the Azure portal page with the project added.

Once a subscription has been obtained in the developer portal, the next step is to
create a hosted service and a storage account for the new application. The hosted
service creates the end points for accessing the application. The unique service
URL that is selected here will be used by clients to access the application.
Similarly, the storage account exposes the endpoints for accessing cloud storage for
the application. Figure 3.8 depicts the creation of the hosted service and the unique
URL chosen here is simpleazureservicecc. This implies that the web page will be
available to users at http://simpleazureservicecc.cloudapp.net. For this example, the
application and storage are assumed to be hosted in the US region – other options
for geo-distribution are Europe or Asia Pacific. Different regions have different cost
implications and the details of the different costs are available on the Azure pricing
web-page.

Windows Azure allows us to request that multiple roles of an application and
the shared data be deployed in an efficient manner to get good performance. This is
done through affinity groups – applications and data that work together can be
placed in an affinity group so that they are hosted in the same region. For this

FIGURE 3.7

Login page of the developer portal.

84 CHAPTER 3 Platform as a Service

http://windows.azure.com
http://simpleazureservicecc.cloudapp.net

example application, the default values for the affinity group will be used. Clicking
on the “Create” button creates a placeholder service using the settings provided.

Since the example application uses message queues for communication, a
storage account is also created on the portal. Figure 3.9 shows the portal after the
storage account is created. Three endpoints have been defined for the storage
account for different types of storage that one can use in Azure, namely blobs,
tables, and queues. The example uses queues. Other models will be examined in
the next section. Similar to a hosted service, the name of the storage account forms
part of each endpoint and defines the highest level namespace for them.

There are two access keys that are generated – either key can be used to obtain
access to the storage endpoints. Microsoft recommends that the keys be changed reg-
ularly to avoid the pitfalls of a leaked key. The observant reader will notice the term
affinity groups in the screenshot and this is similar to the case of the hosted service,
to provide geographic proximity to data and applications. Windows Azure also offers
the option of enabling a content delivery network (CDN) for the data – this allows
applications to serve data from locations that are closest to the end user. At the
time of writing there were 18 data-centers around the world that are part of the
Azure CDN. Since the example content consists of only the messages transmitted
between the Web and Worker roles, this option will not be selected.

FIGURE 3.8

Creating a hosted service.

Windows Azure 85

After creating a storage account, the configuration should be modified to
use the cloud storage for messages. This is accomplished by modifying the
AzureStorageConnectionString configuration parameter in the service con-
figuration (.cscfg) file to use cloud storage for application data. Recall that
this parameter was initially configured to use development storage; the new
setting is:

"DefaultEndpointsProtocol= [http|https];
AccountName= <storage_account_name>;
AccountKey=<key>".

The application is now rebuilt. Figure 3.10 shows the development fabric view
with the application accessing cloud storage instead of the development storage.
The example is almost complete. In order to host the Web and Worker roles on
the cloud, it is necessary to create a package by using the “Publish” context
menu, shown in Figure 3.11. Choose the “Create Service Package” option to
create the application’s service package (.cspkg) file.

Next, we return to the home page of the hosted service shown in Figure 3.12.
The page shows two deployment environments – production and staging. Both
environments host the application on the cloud, but the staging environment creates

FIGURE 3.9

Storage portal information.

86 CHAPTER 3 Platform as a Service

the deployment with a temporary URL as the end point, while the production
deployment uses the service URL.

Applications can be moved from production to staging and vice-versa at any
time. First, the application will be deployed in the staging environment, as shown
in Figure 3.13. Green bars next to the Web and Worker roles indicate that they

FIGURE 3.10

Development fabric running on cloud storage.

FIGURE 3.11

Publish menu.

Windows Azure 87

FIGURE 3.12

Home page of the hosted service portal.

FIGURE 3.13

HelloAzure application after upload to the staging environment.

88 CHAPTER 3 Platform as a Service

are executing. The staging application is hosted on a temporary URL, one that is
nearly impossible to discover accidentally. This allows developers to deploy their
applications on the cloud and test them before making them publicly available.

NOTE
CPU Time Billing
Windows Azure starts billing for CPU time when applications are deployed in the staging
environment and continues billing when applications (either in staging or production) are
suspended. Applications must be deleted from the portal for billing to stop.

Finally, the deployment switch icon is selected to move the service into produc-
tion. The application is now available on http://simpleazureservicecc.cloudapp.net.
If more instances of the Web or the Worker role are needed, the service configura-
tion from the configuration page in the portal can be modified. The configuration is
an XML file which is similar to the one shown here:

<ServiceConfiguration serviceName="CCBSimpleCloudService"/>
<Role name="HelloAzureWebRole">

<Instances count="1" />
<ConfigurationSettings>
</ConfigurationSettings>

</Role>
<Role name="HelloAzureWorkerRole">

<Instances count="1" />
<ConfigurationSettings>
</ConfigurationSettings>

</Role>
</ServiceConfiguration>

The Instances node specifies the number of instances of each role. This can
be set to higher values if more instances of either role are required. A method
called RoleEnvironmentChanging is the handler that is invoked in the Web or
Worker role whenever its settings are modified. The source code for this handler
is automatically generated by Visual Studio, but can be modified to perform cus-
tom actions when the role settings are changed. Recall that this handler was added
to the OnStart() and Application_Start() methods earlier.

The service configuration file can also be used to set the size of the VM to be
used to run the role. Table 3.1 shows the sizes that were available at the time of
writing this book. Additionally, each storage account can have a maximum of
100TB of storage on the cloud, and overall, the Azure storage system is designed
to provide a bandwidth of 3GB/s, servicing 5000 requests per second for a single
storage account. These are current numbers and are subject to change in the
future.

To summarize, the following were the steps needed to build an Azure applica-
tion. First the Web and Worker roles for the new application were created and

Windows Azure 89

http://simpleazureservicecc.cloudapp.net

tested in the development environment. Then an Azure subscription was obtained
and used to create a hosted service and storage account. Next, the application was
tested in the development environment but using cloud storage. Further testing of
the application was performed, this time running live on the cloud, but in a sta-
ging environment. In the end, the staging environment was switched to production
making the application globally accessible at the desired URL. While all the pre-
ceding steps are not mandatory, the pattern is a useful one to follow as it
improves the overall development experience by allowing a large part of the
debugging to be done in the development environment where there is better tool
support. Figure 3.14 shows the portal after the application is switched to produc-
tion mode.

This simple example demonstrates the power of the Azure platform. Web roles
provide scalable front-ends to access applications – developers can host web sites
or web services as Web roles and obtain high availability and scale for their appli-
cations. Worker roles are more powerful – developers can use them for large-scale
data processing in conjunction with Azure storage, and for other compute-intensive
tasks without needing investments in servers, data centers, cooling, and manpower to
manage operations. They can scale up or scale down their applications on the go –
with little or no downtime in-between. Commercial enterprises can use Azure to host
e-commerce portals, with the ability to scale according to user load, with just
a change in configuration settings. The application thus hosted can seamlessly interact
with on-premise data and applications using the Windows Azure App Fabric
(previously known as .NET Services).

Technical Details of the Azure Platform
At a high level, Windows Azure can be thought of as a Cloud Operating System
over Microsoft blade servers. This operating system handles provisioning,

Table 3.1 VM Sizes Offered by Windows Azure

Compute
Instance Size CPU Memory

Instance
Storage

I/O
Performance

Cost Per
Hour

Extra Small 1.0
GHz

768 MB 20 GB Low $0.05

Small 1.6
GHz

1.75 GB 225 GB Moderate $0.12

Medium 2 × 1.6
GHz

3.5 GB 490 GB High $0.24

Large 4 × 1.6
GHz

7 GB 1,000 GB High $0.48

Extra Large 8 × 1.6
GHz

14 GB 2,040 GB High $0.96

90 CHAPTER 3 Platform as a Service

monitoring and complete management of hardware. It provides a shared pool of
compute, disk and network resources to the applications. The operating system
also manages the application life-cycle on the platform and provides reliable
building blocks for authoring applications such as storage, queuing, caching,
access control and connectivity services. Individual applications are run in virtual
machines that offer a Windows Server 2008-compatible environment and are man-
aged by the cloud operating system.

In addition, the platform offers a relational database (SQL Azure) and a set of
services called AppFabric (formerly known as .NET services) that allow on-premise
applications to interoperate with applications hosted in the cloud with secure connec-
tivity, messaging, and identity management. On-premise applications are applica-
tions hosted on machines within enterprise firewalls. A schematic diagram showing
the interactions among these components is shown in Figure 3.15.

The following sections describe the next level details of the Azure runtime
environment, SQL Azure and AppFabric.

Windows Azure Runtime Environment
The Windows Azure runtime environment provides a scalable compute and sto-
rage hosting environment along with management capabilities. It has three major
components: Compute, Storage and the Fabric Controller.

FIGURE 3.14

Final production deployment of the HelloAzure application.

Windows Azure 91

As depicted in Figure 3.16, Windows Azure runs on a large number of
machines, all maintained in Microsoft data centers. The hosting environment of
Azure is called the Fabric Controller. It has a pool of individual systems con-
nected on a network and automatically manages resources by load balancing and
geo-replication. It manages the application lifecycle without requiring the hosted
apps to explicitly deal with the scalability and availability requirements. Each
physical machine hosts an Azure agent that manages the machine – starting from
boot up, installation of the operating system and then the application, application
monitoring during its execution, and finally even attempting to fix the system if
the agent detects any problems. Compute and storage services are built on top of
this Fabric Controller. Note that the Fabric Controller is not the same as the
AppFabric – the former manages machines in the cloud, while the latter provides
services to connect on-premise applications with those in the cloud.

The Azure Compute Service provides a Windows-based environment to run
applications written in the various languages and technologies supported on the

Blobs

Cloud
Applications

On premise
applications

On premise
applications

Other Enterprise
Networks

Enterprise Network
(Account owner)

Tables

Windows Azure
Runtime

Windows Azure
AppFabric

SQL Azure

Queues

FIGURE 3.15

Schematic diagram of Azure platform services.

92 CHAPTER 3 Platform as a Service

Windows platform. While any Windows-compatible technology can be used to
develop the applications, the .NET framework with ASP.NET has the greatest tool
and library support. Like most PaaS services, Windows Azure defines a program-
ming model specific to the platform, which is called the Web role-Worker role
model. This model was briefly referred to in the simple “Hello World” example
and will be further detailed in The Azure Programming Model section later in this
chapter.

The Windows Azure storage service provides scalable storage for applications
running on the Windows Azure in multiple forms. It enables storage for binary and
text data, messages and structured data through support for features called Blobs,
Tables, Queues and Drives. The distinction between these types of storage is
described in the section Azure Storage Services. For applications that require simple
SQL-based access to traditional relational databases, SQL Azure provides a cloud-
based RDBMS system. These are described later in this section.

Figure 3.17 shows a bird’s-eye view of the internal modules of the platform.
At the heart of the system are the storage and compute clusters – vast numbers of
machines kept in Microsoft data centers. These machines, the operating systems
running on them, and applications are managed by the Fabric Controller. The
external interface of the Azure system consists of a set of REST APIs that per-
form service management and give users access to the storage system.

Fabric Controller
The Fabric Controller (FC) is a distributed program that manages the hardware
and applications in a cluster internally used by Azure. The key task of the Fabric
Controller is to assign the appropriate resources to an application based on the
number of roles, number of role instances, and the upgrade and fault domains spe-
cified by the application. Each machine in the cluster runs a hypervisor which
hosts virtual machines running Windows 2008-compatible OSes. The hypervisor
is an Azure-specific version of Windows Operating System. The host operating

Windows Azure

Compute

Fabric controller

Storage
Blots. Table. Queues

FIGURE 3.16

Windows Azure runtime environment components.

Windows Azure 93

system has an Azure host agent that is responsible for monitoring the health of the
physical machine, for starting virtual machine instances, and for reporting the
health of the machine to the Fabric Controller. The FC monitors host agents
through a heart-beat mechanism; if the FC detects that a host hasn’t responded to
a heartbeat within a pre-determined duration, it considers the machine to be down
and takes measures to restore the machine. Guest operating systems have a guest
Azure agent that monitors the role running on the VM. The guest agent restarts
roles that terminate and keep the host agent informed about the status of the vir-
tual machine. The host agent and the guest agent also communicate through a
heartbeat; when the host detects that it hasn’t received a heartbeat from a VM, it
takes measures to restore the VM.

The FC also brings up new machines into the cluster when required, or when
existing machines go down for any reason. Figure 3.18 shows how the FC works
with multiple host agents running different parts of a single application. To prevent
the FC from becoming a single point of failure, the FC itself runs on groups of
machines.

Readers can look up the book Programming Windows Azure [10] for
additional details about the Windows Azure architecture. Mark Russinovich’s talk
on Azure internals at the 2010 edition of Microsoft’s Professional Developers
Conference [11] is another good source for more information.

Business Portal

User
code

Runtime
API

VM setup

Cloud VM

Developer portal

Service management service

REST

REST

Storage

cluster Compute

cluster

MSFT DatacentersDesktop

WA SDK

VS tools

......

FIGURE 3.17

Windows Azure in one slide.
(Courtesy: Manuvir Das, Microsoft Corporation)

94 CHAPTER 3 Platform as a Service

SQL Azure
SQL Azure provides a relational database on the cloud. While Azure Table
storage service facilitates storing and querying of structured data, it does not pro-
vide full-relational capability provided by a traditional relational database manage-
ment system (RDBMS). SQL Azure offers a cloud-based RDBMS system based
on SQL Server with nearly all the features offered by on-premise versions of the
RDBMS. The database thus hosted can be accessed using ADO.NET and other
Microsoft data access technologies. In fact, most applications written for SQL
Server will work unchanged when the database is deployed on SQL Azure. Custo-
mers can also use client-side reporting tools like SQL Server Reporting Services
to work with cloud databases.

SQL Azure also frees customers from the operational details of managing large
databases. Instead of focusing on service logs, configuration management, and
backup, customers can now focus on what matters to their applications: data. The
operational details of the infrastructure are handled transparently by the Microsoft
data centers.

The programming model used for SQL Azure is very similar to that of exist-
ing database applications and, in a way, SQL Azure provides Database as a

Fabric
Controller

Web/Worker role

Web/Worker role

Web/Worker role

Web/Worker role
Azure guest agent

Azure guest agent

Azure guest agent

Azure guest agent

Azure host agent

Azure host agent

VM

VM

VM

VM

FIGURE 3.18

Fabric Controller architecture.

Windows Azure 95

Service. Readers interested in learning more about SQL Azure are referred to the
documentation on the SQL Azure site [12].

Azure AppFabric
A common need in large IT companies is for applications to talk to each other.
While this is hard to accomplish within an enterprise, it is even harder when some
of the applications are hosted on the cloud. This is due to security requirements.
The overall system needs to support federated identity management, where two
distinct entities can trust each other’s identity management systems. This is typi-
cally done either by configuring firewalls to allow for movement of data or build-
ing secure virtual private networks (VPN). Further complications arise when
applications have to communicate between an organization and its vendors, part-
ners, or customers, all of whom may operate in completely different environments
with different identity management, security, and application policies and technol-
ogies. The Azure AppFabric is a middleware platform that developers can use to
bridge existing applications/data to the cloud through secure, authenticated con-
nectivity across network boundaries.

The Azure AppFabric consists of three main components: the Service Bus,
Access Control, and Caching modules, briefly described here:

• The Service Bus provides secure messaging and connectivity between cloud
and on-premise applications and data. It exposes on-premise data and services
in a secure manner to selected cloud applications through firewalls, NAT
gateways and other restrictive network boundaries.

• The Access Control component provides federated identity management with
standards-based identity providers that includes Microsoft’s Active Directory,
Yahoo!, Google and Facebook. Using this Access Control module, developers
can integrate their identity management systems and that of their partners/
vendors with Windows Azure applications. This provides users across these
organizations a single sign-on facility to access services hosted on Azure. In
conjunction with the Service Bus, Access Control allows an organization to
selectively expose its data and services to partners, vendors, and customers in
a secure manner, with appropriate authorization at the access points.

• The Caching component provides an in-memory, scalable, highly available
cache for application data, which includes data stored in Azure tables and
SQL Azure. Caching improves the performance of both cloud applications and
on-premise applications that access cloud resources through intelligent caching
of managed objects.

The functionalities of all the AppFabric components are available as .NET
libraries for use by developers. Both Service Bus and Access Control are essential
parts of the AppFabric and are available in the Azure commercial release. At the
time of writing, Caching was available as a technology preview, while Microsoft
had announced two more services, Integration and Composite app, to provide
more functionality to developers. Further details of the AppFabric are available in

96 CHAPTER 3 Platform as a Service

the AppFabric site [13]. Additionally, the Azure portal [1] has “deep dives” on
many topics. These include the Service Bus, Access Control, Table storage, Blob
storage, and Queues. The portal also has guides on SQL Azure – including intro-
duction to SQL Azure, scaling it out, and development and deployment of SQL
Azure databases.

Azure Programming Model
In the “Hello World” example described in the first section on Azure, the application
used the concept of a Web role and a Worker role, and configured Windows Azure
with the number of instances of each role that should be created. The Web role
enables web applications to be hosted on IIS servers and provides external interactiv-
ity while the Worker role mirrors the heavy-duty processing that is typically done by
Windows services and applications. These two roles supported by Azure depict the
common types of application components that a developer needs to create to develop
a full-fledged cloud application. The following looks at more details of these concepts
that will help in producing a good design of cloud applications.

Web Role and Worker Role
As the name suggests, Web role instances accept and process HTTP (or HTTPS)
requests that arrive through a web server hosted on the virtual machine in which
it runs. Web roles can be implemented using any technology supported by Micro-
soft’s web-server Internet Information Services (IIS) 7, which includes plain
HTML/JS, ASP.NET, and Windows Communication Framework (WCF). Win-
dows Azure provides in-built load-balancing to spread requests across Web-role
instances of a single application. This has important implications for the applica-
tion. Readers should note that there is no affinity for a particular instance of a
Web role; i.e., requests from clients are randomly distributed over all the Web
roles, and it is not possible to guarantee that requests from the same client go to
the same Web role. Therefore, all Web roles must be stateless. Application state
must be stored either in Windows Azure storage, or in SQL Azure.

Worker roles are similar to Web roles in that they can accept requests and process
them, with the exception that they do not run in an IIS environment. Worker roles are
used for the more heavy-duty processing that is typically done by Windows services
in on-premise applications. Web roles and Worker roles communicate by either using
message queues or by setting up direct connections via WCF or other technologies.
Figure 3.19 illustrates an application with two Web roles and two Worker roles
running in the cloud with a load balancer that directs clients’ requests to one of the
Web role instances. On similar lines, the Web role can contact either of the Worker
role instances.

Microsoft provides Visual Studio project templates for creating Windows
Azure Web roles, Worker roles, and combinations of the two, and developers are
free to use any programming language supported on Windows. Eclipse for Java
and PHP development are supported via plug-ins.

Windows Azure 97

The Windows Azure software development kit also includes the Development
Fabric – a version of the Windows Azure environment that runs on the develo-
per’s machine. The development fabric contains the dev store which mimics Win-
dows Azure storage, and a Windows Azure agent that provides much of the
functionality provided by the cloud agent. Developers can create and debug their
applications using this local simulation, then deploy the app to Windows Azure in
the cloud when it is ready. These were depicted in Figures 3.4 to 3.6 earlier in
this chapter.

Using Azure Cloud Storage Services

NOTE
Azure Storage Services

Blob service: For large binary and text data
Azure Drives: To use as mounted file systems

Table Service: For structured storage of non-relational data
Queue Service: For message passing between components

Load Balancer

VM (Windows)VM (Windows)
IIS

AgentAgent

Web Role

Agent Agent

Web Role

VM (Windows)
IIS

VM (Windows)

Worker
Role

Worker
Role

FIGURE 3.19

Compute service with two Web roles and two Worker roles.

98 CHAPTER 3 Platform as a Service

The Windows Azure platform offers four kinds of storage service for applications
to store data – blobs, drives, tables and queues. The Blob service lets applications
store and retrieve large binary and text data, called blobs (Binary Large Objects). It
provides file-level storage and is similar to Amazon S3. It also allows developers to
mount blobs as “cloud drives” for programmatic access from within the applications.
Windows Azure Drives are used for mounting an NTFS volume to be accessed by
an application, and are similar to Amazon EBS. The Table service is used for
structured storage for non-relational data, and is similar to Amazon’s SimpleDB. The
Queue service can be used for storing messages that may be accessed by a client.
We used this service in the “Hello World” example. The Queue storage provides
reliable message-passing services for both applications that are completely within the
cloud and also for applications that are partitioned between on-premise and cloud.
Both on-premise and cloud applications can access all the capabilities of the storage
service through a REST-based CRUD API (see sidebar).

NOTE
CRUD: Create, Read, Update and Delete functionality, typically offered by an API that deals
with data

Access to each of the storage services is through an Azure storage account
which acts as a namespace and defines ownership of data. All three services are
accessible through REST-based endpoints (over HTTP/HTTTPs). Customers create
storage accounts to avail the functionality of these services. Each storage account can
store a maximum of 100TB of data across the different storage types. Customers can
create additional storage accounts for higher storage needs. Access to data on the
storage services is controlled by a pair of keys that are provided for each account.

Blob Service
Blobs are (typically large) unstructured objects like images and media, and are similar
to Amazon S3. Applications deal with blobs as a whole, although they might read/
write parts of a blob. Blobs can have optional metadata associated with them in the
form of key-value pairs; for instance, an image could have a copyright notice stored
as metadata. Blobs are always stored under containers, which are similar to AWS
buckets. Every storage account must have at least one container, and containers can
have blobs within them. Container names can contain the directory separator
character (“/”) – this gives developers the facility to create hierarchical “file-systems”
similar to those on disks. This is similar to Amazon S3, except that in S3, object
names (and not buckets) can have the “/” character.

The blob service defines two kinds of blobs to store text and binary data: A page
blob and a block blob. Page blobs are blobs that are optimized for random read/write
operations anywhere in the content of the blob, while block blobs are optimized for
streaming and are read and written a block at a time. Multiple sets of blobs can be
organized in containers that can be created within an Azure storage account.

Windows Azure 99

In order to make data transfer more efficient, Windows Azure implements a content
delivery network (CDN) that stores frequently accessed data closer to the applications
that use it. The AppFabric’s Caching component can also be used to improve read
performance of applications while accessing Azure blobs.

As mentioned before, access to blob and storage services in Azure is through
REST interfaces. Below is an example REST API for creating a block blob.
Please note that the same blob can be accessed by a different application or differ-
ent process in the application to enable sharing of text or binary data.

Request Syntax:
PUT http://myaccount.blob.core.windows.net/pustakcontainer/
mycloudblob HTTP/1.1
Request Headers:
x-ms-version: 2009-09-19
x-ms-date: Fri, 2 Sep 2011 12:33:35 GMT
Content-Type: text/plain; charset=UTF-8
x-ms-blob-type: BlockBlob
x-ms-meta-m1: v1
x-ms-meta-m2: v2
Authorization: SharedKey myaccount:YhuFJjN4fAR8/
AmBrqBz7MG2uFinQ4rkh4dscbj598g=
Content-Length: 29

Request Body:
Sold book ISBN 978-0747595823

If x-ms-blob-type header is PageBlob, a new page blob is created. On similar
lines, to access a blob, one needs to use one of the following URI’s in the GET method
as below, depending upon whether the shared data is time varying or statically
updated.

GET http://myaccount.blob.core.windows.net/pustakcontainer/mycloudblob
GET http://myaccount.blob.core.windows.net/pustakcontainer/

mycloudblob?snapshot=<DateTime>

The response contains the contents of the blob that can be used by the application.
Additionally, the response also contains an Etag response header which can be used
in the next GET with If-Modified request header, for application optimization.

Table Service
For structured forms of storage, Windows Azure provides structured key-value
pairs stored in entities known as Tables, which are similar to Amazon SimpleDB
described in Chapter 2. The Table storage uses a NoSQL model based on key-
value pairs for querying structured data that is not in a typical database. This con-
cept of NoSQL and some guidelines for developers to design using key-value
pairs are explained in Chapter 5.

Simply put, a Table is a bag of typed properties that represents an entity in the
application domain. For instance, the following definition {EmployeeId: int,

100 CHAPTER 3 Platform as a Service

EmployeeName: string} defines a table that could be used to store (minimal)
employee data. It is important to note that these tables are not relational in nature, nor
are table schemas enforced by the Azure framework. Data stored in Azure tables is
partitioned horizontally and distributed across storage nodes for optimized access.

Every table has a property called the Partition Key, which defines how data in
the table is partitioned across storage nodes – rows that have the same partition key
are stored in a partition. In addition, tables can also define Row Keys which are
unique within a partition and optimize access to a row within a partition. When pre-
sent, the pair {partition key, row key} uniquely identifies a row in a table.

The access to the Table service is also through REST APIs similar to the Blob
service described earlier. To create a table, an XML description (actually ADO.
NET entity set) is sent as the request body to a POST method. To access specific
records of data within a table, the application can use query entities operation in a
GET method. Two examples of using the table query operation are given below. The
first one does a search for a record with matching partition key and row key, while
the second uses a condition over one of the fields to extract required data fields.

GET http://myaccount.table.core.windows.net/pustaktable
(PartitionKey='<partition-key>',RowKey='<row-key>')

GET /myaccount.table.core.windows.net/Customers()?$filter=(Rating
ge 3) and (Rating le 6)

Queue Service
Queues are the third kind of storage, provided for reliable message delivery within
and between services. A storage account can have unlimited number of queues,
and each queue can store an unlimited number of messages, with the restriction
that messages are limited to 8KB in size at the time of this writing. Queues are
used by Web roles and Worker roles for inter-application communication, and by
applications to communicate with each other. An example program using message
queues for communication between Web and Worker roles was seen earlier in this
chapter.

The Azure SDK provides .NET wrappers for the REST APIs offered by the
storage services. The CloudStorageAccount class provides authentication, while the
CloudBlobClient, CloudTableClient and CloudQueueClient classes offer function-
ality required by clients of the Blob, Table and Queue storage, respectively.

Channel 9 [14] and Microsoft’s Professional Developers’ Conference (PDC)
[15] are great sources of talks and deep dives on Windows Azure. Both sites have
developers and program managers from the Windows Azure team presenting and
demonstrating different features of the Azure platform.

Handling the Cloud Challenges
Chapter 1 had mentioned that all cloud platforms have to handle certain com-
mon technical challenges, namely scalability, multi-tenancy, security and

Windows Azure 101

availability. The following discussion shows how these challenges are handled
in Azure.

Scalability
The major resources that need to be scaled are compute resources and storage
resources.

Scaling Computation: In any cloud application, it is a requirement for the
application to be able to scale up and down in response to the load. To scale
Worker roles, developers can use shared queues with multiple Worker roles read-
ing off one or more queues as shown in Figure 3.20. One can also create the VM
instances in an upgrade domain (with manual or automatic upgrade) using REST
APIs, if needed. The upgrade domain operation is asynchronous and can be
invoked with the following POST command, for example:

https://management.core.windows.net/<subscription-id>/services/
hostedservices/pustakService/deploymentslots/deployment/?comp upgrade

Windows Azure places Web roles behind a hardware load-balancer that pro-
vides load-balancing of incoming requests across the different instances of the
Web role with a very high throughput. Each queue offers a throughput of nearly
500 transactions per second. For higher throughput, developers can create multiple
queues between Web roles and Worker roles, and have the Worker roles pick up
messages either at random, or based on some other scheduling strategy. Customers
can use the monitoring API (described later in this section) to monitor load on
their role instances and choose to add new instances on the fly when required. It
can be seen that this is similar to the load balancing possible in Amazon and HP
CloudSystem Matrix.

Incoming
requests

Load
Balancer

Web
Role

Web
Role

Web
Role

Web
Role

Msg

Msg

Msg

Worker
Role

Worker
Role

Worker
Role

Worker
Role

Worker
Role

Message
Queue

Message
Queue

FIGURE 3.20

Scaling Web and Worker roles using shared queues.

102 CHAPTER 3 Platform as a Service

Scaling Storage: In Azure, storage is scaled by partitioning the data, with each
partition being stored and accessed as a separate entity. As stated previously, to
facilitate scaling data, Windows Azure allows the specification of a partitioning
key that is used to partition blobs, tables and messages across machines in the
Azure storage. Hence, the partitioning key determines how well data is distributed
across machines, which makes it a crucial design decision while designing Azure
applications. For blobs and queues, the names of the blob or queue serve as the
partition key, while developers can define a partition key for the tables they
create.

Security and Access Control
There are four aspects of security that need to be handled well for secure access
control and the solutions used by Azure and those are described below.

Identity and authentication: First, the methods used to identify and authenti-
cate the users should be easy to use and secure. Windows Azure uses Live ID to
provide identity and authentication services. Actions that users perform on the
portal are authenticated using this service.

Message encryption: Communications between different entities must be ensured
to be secure. For all secure HTTP endpoints, including those for storage and roles,
Windows Azure automatically verifies and decrypts requests (and encrypts messages
for internally initiated traffic) using customer-provided certificates. Additionally, the
service management API uses SSL to encrypt communication between the customers
and the service, using a certificate uploaded by the customer in the Azure portal. This
process also allows account owners to delegate service administration to a group of
people as follows – first, the account owner uploads the certificate (with the private
key) and provides administrators with the public key. Administrators now need to
sign their requests (if done programmatically) with the public key provided. Thus, the
account owner’s credentials and private key remain private, and the service adminis-
tration can be delegated to others.

Multi-tenancy: Since the cloud is a shared infrastructure, methods used to
enforce isolation between processes running on the same server are important.
The Windows Azure trust boundary terminates at the host operating system.
Everything that executes above the host operating system is untrusted. This creates
a boundary where trusted code (host operating system) is in charge of the physical
machine, and untrusted code is run on virtual machines, with a secure hypervisor
controlling the boundary between the two. Both the hypervisor and the host oper-
ating system have undergone intensive scrutiny, including proof techniques to pro-
vide a strong barrier against malicious applications. Virtual machines are thus
isolated from each other and the host operating system. Further, the host Azure
agents in conjunction with the host operating system implement mechanisms to
ensure that the VMs running on them cannot spoof other machines, cannot receive
traffic not directed to them (also known as promiscuous mode in network packet
sniffer terminology), and cannot send or receive broadcast traffic from inappropri-
ate sources.

Windows Azure 103

Storage security: To protect customer data, Windows Azure provides storage
account keys (SAKs) which are required for most data accesses. These SAKs are
available from the Azure Portal. Storage requests can additionally be encrypted
with customer certificates, which protect customer communication from eaves-
dropping attacks. When data is deleted from the store, the storage subsystem
makes the customer data unavailable – delete operations are instantly consistent,
and all copies of deleted data are removed. In the event of hardware repair, per-
sonnel at the data center will de-magnetize hard drives to ensure that customer
data never leaves the data center.

For security and privacy, Windows Azure Security Overview [16] is a good
guide to the security and privacy features of Windows Azure. “Azure Security
Notes” [17] provides detailed discussions on cloud security, and securing Azure
applications. Security Best Practices for Developing Windows Azure Applications
[18] provides best practices on designing secure Azure applications. Further,
Chapter 7 describes the design considerations for a secure cloud platform.

Reliability and Availability
This section describes the measures taken by Windows Azure to ensure the avail-
ability of both services and storage.

Service Availability: To provide a reliable service, Windows Azure introduces
the concepts of fault domains and upgrade domains. Two virtual machines are in a
single fault domain if a single hardware fault, network or power outage can bring
down both machines. When a role has multiple instances, Windows Azure auto-
matically distributes the instances across different fault domains so that a single
outage does not bring down the role. Upgrade domains are used to make service
upgrades to a running application. When an in-place upgrade is done to an exist-
ing application, Windows Azure rolls out one upgrade domain at a time – thus
ensuring that some instances of the service are always available to serve user
requests. A similar strategy is used for OS upgrades – each domain is updated
individually. Together, fault domains and upgrade domains ensure high availabil-
ity of customer applications. The SLA for Windows Azure guarantees that when
customers deploy two or more role instances in different fault and upgrade
domains, their Internet facing roles will have external connectivity at least 99.95%
of the time.

Storage Availability: Windows Azure keeps three copies of user data in three
separate nodes in different fault domains to minimize the impact of hardware fail-
ures. Similarly, when customers choose to run more than one instance of their
application roles, the instances are run in different fault and upgrade domains,
ensuring that instances of the roles are always available. The SLA guarantees
99.95% uptime for applications that have more than one role instance. Further,
mechanisms to mitigate Denial of Service attacks are provided by the platform –

the details are too intricate to be mentioned here, and can be found in documented
security best practices [18].

104 CHAPTER 3 Platform as a Service

Interoperability
A major focus of the Windows Azure cloud has been interoperability of cloud-
based applications with on-premise services and resources. Interoperability is
important, since organizations may migrate a subset of their applications to the
cloud. These applications, which are designed to be hosted on premise, may need
other services to function correctly. For example, a payroll application may need
access to an internal employee database and the authentication service of the
enterprise, such as Active Directory. Many challenges need to be overcome in
order to provide such access. Firewalls and NAT devices make it difficult for
external services to initiate communication with services that are behind these bar-
riers. Authentication and authorization of users is another issue, as the external
and internal services might use disparate authentication mechanisms. Finally, dis-
covery of the internally hosted services in a secure and reliable manner is a
challenge.

The Azure AppFabric is focused on interoperability. As described earlier, the
Service Bus component provides bidirectional communication between on-pre-
mise and on-cloud applications. The Access Control component is a service that
mediates access control between Windows Azure and internal services residing in
a data center. Both components are exposed through the Azure AppFabric SDK,
and are available to developers as paid services. Details of the service are beyond
the scope of this chapter. Readers interested in the topic should read the Windows
Azure AppFabric Overview [13] document on the Azure web site.

Designing Pustak Portal in Azure
This section illustrates the features of Azure by considering the design of Pustak
Portal, the running example described in the Preface of this book. Consider imple-
menting a self-publishing feature in Pustak Portal which allows authors to upload
books and perform document and image processing functions to prepare the
books for publication. The portal provider (owner of Pustak), uses the IaaS and
PaaS features of the cloud platforms to scale to the huge number of users manipu-
lating their documents on the cloud. The portal provider is also interested in moni-
toring the usage of the portal and ensuring maximum availability and scalability
of the portal.

As per the description of the Pustak Portal in the Preface, component develo-
pers can add additional document manipulation/processing functionality on the
portal and will get paid by the portal owner if consumers use their document ser-
vices. To enable this feature and for ease of integration, a standard interface for
components can be defined as follows. Components are expected to adhere to a
design where they obtain the source URLs from a message queue, read the con-
tents of the URL from Azure storage, perform the processing and write the result
to a target URL which is also specified in the initial message. The component is
then expected to return a message indicating the target URL and whether the
operation was successful.

Windows Azure 105

This portal can be implemented on the Windows Azure platform by using a
Web-role, Worker-role pair for each distinct service feature, with multiple
instances of each role for scale. For example, if one of the features is to index
the book, the Web role could have a button that causes the book to be sub-
mitted to a Worker role for indexing. In other words, each document proces-
sing application will correspond to a Worker role (and an optional Web role)
in the system. The examples presented previously in the chapter illustrated how
to write such pairs.

The Windows Azure Guidance project on CodePlex [19] has many documents
related to developing and architecting Windows Azure projects. The PDC talk
[20] is another good source of information. The Microsoft Patterns and Practices
Developer Center has a detailed guide on architecting applications for Azure [21].
Another useful guide is the book Windows Azure Platform Articles from the
Trenches [22].

Storage for Pustak Portal
The Windows Azure storage services can be used for different aspects of Pustak
Portal. The documents and images for the books can be stored in blob storage,
while storing structured data like user information and billing details in table
storage or SQL storage. The main entities in the system are shown in Figure
3.21 (these are the same regardless of whether the information is to be stored in
SQL or tables). The User entity stores information about the authors in the
system. The Application entity stores information about the document processing
applications in the system. The Developer entity stores information about the
developers of the various applications. The UserFiles entity contains information

FIGURE 3.21

Entities in the Pustak portal.

106 CHAPTER 3 Platform as a Service

about the books written by the authors, and the UserApplicationActivity
entity stores data about the usage of applications by the authors. A detailed
description of the various fields in these entities will be presented in the later
parts of this section together with a description of the functionality implemented
by these fields.

SQL Azure: SQL Azure is a better fit for storing relational data like the User
entity and Developer entities. Unlike other Azure storage services (tables, queues
and blobs), SQL Azure does not have REST APIs. The sqlcmd utility can be used
to send standard SQL commands to operate on relational tables, create tables,
insert data and so on. An example command is shown here:

C:\>sqlcmd -U guestLogin@hplabserver.net -P simple -S hplabserver.net -d
master
1> CREATE DATABASE pustakDB;

In general, the entities shown in Figure 3.21 can be created either in Azure
Table storage or in SQL Azure. An important consideration for choosing one over
the other is whether the application requires strong consistency and other ACID
properties.

Security: As seen in Figure 3.21, the data stored for each user in Pustak Portal
include the name of the user, the Live ID of the user, and a Live ID authorization
token that is returned by the Live ID authentication services when a user is suc-
cessfully authenticated.

For scaling Pustak Portal data, partitioning keys can be used. The key icon in
Figure 3.21 indicates the partitioning keys for each table. For UserApplicatio-
nActivity, User, and UserFiles tables, UserLiveIdAuthToken, the LiveID author-
ization token of the user serves as the natural partitioning key because it partitions
data and activity on a per-user per session basis. For the Developer and Applica-
tion tables, the DeveloperLiveID and ApplicationId fields serve as a natural par-
titioning key since they partition the data on the basis of the developer and the
application, respectively.

Tracing and Monitoring: While the Windows Azure SDK provides a wide
gamut of debugging and profiling facilities in the simulation environment, most
real-world applications will need debugging and profiling in the deployment envi-
ronment. However, debugging on the Azure cloud is difficult because the cloud is
a dynamic environment with distributed transactions and applications that are
dynamically switched between virtual machines. This makes it crucial to have suf-
ficient support for tracing and diagnostics in the Azure system, particularly the
ability to centrally manage diagnostics on the various role instances, to store logs
in reliable data stores that are available off the cloud, and to fine-tune the diagnos-
tics setup. More details on Azure cloud management are available in Chapter 8.
Additionally, an excellent overview of Windows Azure Diagnostics and Monitor-
ing features can be found on the PDC10 portal [23] and the complete documenta-
tion on the MSDN web site [24].

Windows Azure 107

GOOGLE APP ENGINE
Google App Engine is a PaaS solution that enables users to host their own applica-
tions on the same or similar infrastructure as Google Docs, Google Maps and other
popular Google services. Just like Microsoft Azure provides a platform to build and
execute .NET applications, Google App Engine enables users to develop and host
applications written using Java, Python and a new language called Go [25]. The plat-
form also supports other languages that use JVM (Java Virtual Machine) runtime
such as JRuby, JavaScript (Rhino), and Scala programming languages.

The applications hosted on Google App Engine can scale both in compute and sto-
rage just like other Google products. The platform provides distributed storage with
replication and load balancing of client requests. The applications can be easily built
using Eclipse Integrated Development environment that many developers will be
familiar with. This section gives a simple overview and key highlights of the platform.

Getting Started
Step by step instructions for using Google App Engine are described here, based on
the procedure available as of the writing of this book [26]. The developer first signs
up for a Google App Engine account using his/her gmail credentials. Figure 3.22
shows the first screen when the application is being configured.

Google App Engine allows a newly developed application to be served from the
developer’s own domain name. For example, if the developer chooses myapp as an
application name, then the application will be served at http://myapp.appspot.com.
This URL can be shared publicly or selectively shared with a small group of
members. Every developer can host up to 10 applications for free with 500 MB of
complimentary storage. The developer needs to pay a nominal amount for the
storage and bandwidth resources used by the application beyond these limits. A
simple dashboard showing the usage metrics for each application can be seen on
the portal, a screenshot of which is shown in Figure 3.23.

NOTE
Developing and Deploying on Google App Engine
1. Download the SDK (Eclipse plug-in)
2. Create a new “Web Application Project”
3. Configure the application
4. Develop code
5. Test in simulated App Engine environment
6. Deploy to Google App Engine

Developing a Google App Engine Application
To develop Java applications, the App Engine SDK (software development kit)
needs to be installed. The SDK is an Eclipse plug-in (Figure 3.24) that includes

108 CHAPTER 3 Platform as a Service

http://myapp.appspot.com

FIGURE 3.22

Google App Engine: Application configuration.

FIGURE 3.23

Application dashboard of Google App Engine.

Google App Engine 109

build, test and deployment environments and is available at http://dl.google.com.
eclipse/plugin/3.x. To get started, one should create a new project as a “Web
Application Project”; right click the project and select “Google” in the preferences
and enter a valid application id for the project. After developing (programming) the
application, during the deployment stage one needs to specify an app id for the
application. To deploy onto the App Engine, similar to creating the application, one
needs to just right click on the project and select the “Deploy to App Engine”
option and the application gets uploaded onto the App Engine and gets deployed!

Another interesting option during application configuration, is an option to
create a GWT (Google Web Toolkit) application. GWT basically allows one to
create interactive applications with drag and drop facility to author a custom graphi-
cal interface. The toolkit then automatically converts the UI portion into JavaScript
with AJAX [27] (asynchronous) calls to access the backend logic on the server.
It may be noted that since Javascript runs within a browser (client-side) and Ajax
provides a non-blocking way of accessing the backend, the overall effect is a good
experience with quick response for interactive applications. A skeleton code for
GWT can be created using the following command.

webAppCreator -out myFirstApp com.cloudbook.myFirstApp

The developer can also check the “Generate GWT Sample Code” option dur-
ing application creation to get a default “Greeting” project created (Figure 3.25).
If this option is unchecked one could write their own Java servlet code and deploy
it on the App Engine as discussed earlier. So, literally any web application written
in Java can be deployed on the App Engine.

FIGURE 3.24

Google App Engine Eclipse plug-in.

110 CHAPTER 3 Platform as a Service

http://dl.google.com.eclipse/plugin/3.x
http://dl.google.com.eclipse/plugin/3.x

The SDK comes with a local web server for test deployment. This local web
server simulates the secure runtime or App Engine sandbox environment with limited
access to the underlying operating system. For example, the application can only be
accessed using HTTP on specific ports. It cannot write to the file system and can
read only files that were uploaded along with application code. An additional restric-
tion with the sandbox environment is that the application when accessed over HTTP
should return back with a response code within 30 seconds. These restrictions are
mainly to prevent one application from interfering with another.

Using Persistent Storage
As mentioned before, an App running within the sandbox environment of Google
App Engine cannot write to the file system and has other restrictions on using OS
calls. However, in reality, two apps may want to communicate or two components
may want to share data or two requests may fall under a single session of the applica-
tion and hence need persistent data. In order to use such persistent data across
requests, the application must use special App Engine services such as datastore,
and memcache, described in the following. Figure 3.26 gives a pictorial view of
using the persistence mechanisms over a simple application to manage book
information.

The datastore service provides a distributed data storage with a query engine
that supports transaction semantics. The datastore is a key-value storage similar to
Amazon SimpleDB and Windows Azure Table Service. Every data record is an

FIGURE 3.25

Google App Engine App deployment.

Google App Engine 111

entity and is identified using a key and a set of properties. Operations on groups
of entities can also be performed if a transaction requires it. The App Engine
datastore provides high availability by replicating the data in multiple copies and
providing a well-proven algorithm (called Paxos algorithm) to synchronize the
multiple copies and provide eventually consistent responses (eventual consistency
is explained in detail in Chapter 6).

The following code snippet exemplifies use of the App Engine APIs for datastore.
This Java code will be part of a servlet and handles the POST method for uploading
book information. For simplicity, only the title, author and publisher are added. To
bring in some variety in data types used, the current date is also added into the book
record. The snippet first retrieves the form submission information, creates a new
Entity and adds in new key-value pairs into the Entity using setProperty call.
Finally, after all the operations on the Entity are performed, datastore.put method
is used to upload that information. Along similar lines, one can develop the GET
method to list details (properties) of a selected book or all the books in the store.

package guestbook;

import com.google.appengine.api.datastore.DatastoreService;
import com.google.appengine.api.datastore.DatastoreServiceFactory;
import com.google.appengine.api.datastore.Entity;
import com.google.appengine.api.datastore.Key;
import com.google.appengine.api.datastore.KeyFactory;

import java.io.IOException;
import java.util.Date;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SetBookDataServlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws IOException {

String bookTitle = req.getParameter("title");
Key bookKey = KeyFactory.createKey("book", bookTitle);
String author = req.getParameter("author");
Date date = new Date();

View Model

Book entity

Author Title

HTML
AJAX

Javascript

Memcache
API

data store
API Data store

FIGURE 3.26

Using persistent stores in Google App Engine.

112 CHAPTER 3 Platform as a Service

Entity book = new Entity("BookData", bookKey);
book.setProperty("author", author);
book.setProperty("date", date);
book.setProperty("publisher", publisher);

DatastoreService datastore = DatastoreServiceFactory.
getDatastoreService();
datastore.put(book);
resp.sendRedirect("/book.jsp?title=" + bookTitle);

}
}

The memcache service can be used to speed up the datastore queries by
having a local cache. For example, if a book is newly published and has become
a hot seller, instead of going to the datastore for updating the sales data, the
developer may wish to keep that entity information in cache, update it locally and
write back to datastore later. Similarly, when multiple clients are requesting the
same, it helps to serve the response from the cache instead of a datastore. Usual
rules of caching principles apply here as well; any record may get replaced by
another entity if cache is low on memory.

A code snippet to use an implementation of memcache in Java called JCache
follows.

import java.util.HashMap;
import java.util.Map;
import net.sf.jsr107cache.Cache;
import net.sf.jsr107cache.CacheException;
import net.sf.jsr107cache.CacheFactory;
import net.sf.jsr107cache.CacheManager;
import com.google.appengine.api.memcache.jsr107cache.GCacheFactory;
Cache cache;
public void initCache() {

Map bookprops = new HashMap();
bookprops.put(GCacheFactory.EXPIRATION_DELTA, 1600);

try {
CacheFactory cacheFactory = CacheManager.getInstance().
getCacheFactory();
bookcache = cacheFactory.createCache(bookprops);

} catch (CacheException e) {
System.out.println("Error in caching"); return;

}
// ... other code.
}
public byte[] getFomCache()
{

// Get the value from the cache.
value = (byte[]) cache.get(key);

}

Google App Engine 113

public void putCache(String key, byte[] value){
// Put the value into the cache.
cache.put(key, value);

}

In addition to the previously described APIs for efficient persistent data
storage, there are other very useful libraries supported for task management, user
data management, developing collaborative applications and so on. For example,
the channel API provides a persistent connection between the browser clients and
server for real time interactivity without polling. The interested reader is encour-
aged to visit the official Google web site to get the latest list of APIs and sample
codes from App Engine Java Overview - Google App Engine - Google Code [28].

As mentioned earlier, the applications hosted on the App Engine run within a
sandbox. Though the sandbox of App Engine does not allow the developer to
write to the file system, it is possible to read files that are packaged as a part of
the WAR file. Additionally, access to certain file types can trigger applications
while some can be static. Accesses to static files are allowed and result in simple
file access; whereas accessing files called resource files will result in application
execution (such as execution of JSP files in web application servers). One can
specify the files that need to be treated as static files and those that need to be
treated as resource file by editing a simple configuration file named appengine-
web.xml. A snippet of the configuration file is the following.

<static-files>
<include path="/**.png" />
<exclude path="/data/**.png" />

</static-files>
<resource-files>

<include path="/**.xml" />
<exclude path="/feeds/**.xml" />

</resource-files>

In summary, Google App Engine is an excellent platform for developers who
want to host their first application on the cloud. All they need to do is to develop
applications just like web applications, and then the App Engine development tool
(Eclipse plug-in) takes care of deploying it on the cloud. The usage policy of the
App Engine cloud platform also makes it easy for developers to try out creating
cloud applications, as the first 10 applications are hosted free of charge. This
should give the reader a great reason to start off right away.

PLATFORM AS A SERVICE: STORAGE ASPECTS
This section describes Cloud platforms that provide PaaS solutions just for acces-
sing Cloud storage. In the previous section, we looked at the overall platform
provided by Azure, where some storage services (with Tables, Blobs, queues and
SQLAzure) could be used along with the compute platform. Some cloud platforms

114 CHAPTER 3 Platform as a Service

provide special features to handle scalable storage needs of cloud applications, and
can be used independent of the platform used for computation. Such special storage
services offered by PaaS vendors are surveyed in this section with IBM data services
and Amazon Web Services as case studies.

Amazon Web Services: Storage
Amazon Web Services (AWS) is again at the forefront when it comes to offering
storage services on the cloud. It caters to most common storage and data needs of a
cloud application by offering services for accessing files, storage blocks/volumes, rela-
tional databases with SQL-query support and even simple key-value pairs (NoSQL).
A detailed description of these data-oriented services was presented in Chapter 2 and
an example of using those services along with cloud-hosted compute services was
described. A brief overview of these services is given here for continuity.

Amazon Simple Storage Service (S3)
The reader may recall from Chapter 2 that Amazon S3 offers file storage in the
cloud. Users create buckets and drop objects or files within them. These files are
accessible using URLs of the form http://s3.amazonaws.com/<bucket>/<key> or
http://bucket.s3.amazonaws.com/<key>, where “bucket” generally is a name cho-
sen by the user to refer to the collection of files (similar to containers in Azure)
and “key” is the name of the file. S3 therefore offers a single-level directory, in
some sense. RESTful APIs with HTTP methods such as GET and PUT are pro-
vided to retrieve and upload files. Client libraries exist to invoke these operations
from many programming languages such as Java and Ruby.

Data files can also be placed in specific geographic locations called regions. By
default, each file is replicated, and the architecture is designed to survive multiple
replica failures ensuring good availability of the file. Additionally, S3 offers ver-
sioning and access controls to files and also offers logging to track file changes.
Clearly, Amazon S3 is a very useful service as it provides a persistent file system
support for cloud applications. It can also be used just as a platform service from
on-premise applications that require large-scale shared file systems.

Amazon Simple DB
Amazon Simple DB (SDB) is a highly scalable key-value store that allows easy
access to semi-structured data with attributes stored and retrieved on the basis of a
key. A set of key-value pairs are organized in the form of domain. For example,
in Pustak Portal, the different attributes of a book can be accessed by a key that
identifies the book (ISBN for example). SDB also provides SQL-like methods for
searching the database. Unlike relational databases, records in SDB need not have
a fixed schema. This makes it simple to use SDB as a method of sharing and inte-
grating data across applications or components of a cloud application where each
component can update key-value pairs relevant to its functionality and use others
as needed.

Platform as a Service: Storage Aspects 115

http://s3.amazonaws.com/
http://bucket.s3.amazonaws.com/

Amazon Relational Database Services
AWS also provides traditional relational databases as a cloud service. In fact, a
number of relational databases have been hosted on EC2 and are available as web
services. These include MySQL, which is provided under the name Relational
Database Service (RDS) and IBM DB2. These databases can be instantiated and
managed through the Amazon Web Services console. Amazon provides many
administrative capabilities to take a snapshot and backup the database as well.
The database can be used either by an on-premise application or a cloud applica-
tion hosted on EC2 or any other infrastructure provider.

A complete description of the Amazon Storage services described above was
provided in Chapter 1. Additionally, some fundamental issues of data storage and
theory behind them are discussed in greater detail in the Data Storage section of
Chapter 5 and the Scaling Storage section of Chapter 6.

IBM SmartCloud: pureXML3

SmartCloud is the set of cloud products and services available from IBM, that
include IaaS, PaaS and SaaS solutions. This section describes a platform for
enabling XML Data as a Service using IBM Data Studio and pureXML – a storage
service that allows cloud services to store and retrieve XML documents [29]. Many
cloud services require flexibility in data storage schema, and one way to get that is
to use XML databases. XML has also been used as a data exchange payload
between multiple components of an application. For example, IBM DB2, pureXML
and IBM Data Studio can be used to create a microblogging application with an
Adobe FLEX® frontend [30, 31]. In this example, the author shows how pureXML
capabilities of IBM DB2 allow storage of XML natively in a database, while Adobe
FLEX applications can read XML directly and populate FLEX user interfaces. Addi-
tionally, as described in Chapter 6, XML databases enable support of multi-tenancy
in storage.

This section looks at the basic concepts of pureXML, how pureXML can
effectively support hybrid applications and touches upon the kind of query lan-
guages supported for ease of programmability. The first part of the section
describes how XML data is stored in DB2. Subsequently, the section describes
how pureXML is made available as a web service using IBM Data Studio and its
usage.

pureXML
As stated previously, there is a need for vendors to support XML data so that
applications can benefit from the robustness and scalability of traditional database
systems while continuing to use XML as a flexible data format. However, XML
is not well-tuned for traditional relational database systems. Hence, storing and
querying XML data via non-relational database techniques may result in the

3Contributed by Dr. Dibyendu Das, Principal Technical Staff, AMD India.

116 CHAPTER 3 Platform as a Service

strengths of relational database like performance, scalability, availability and
reliability being compromised. pureXML is designed to marry the strengths of
traditional DB2 with techniques for effective access of XML data.

Conceptual Overview: Following is a simple XML snippet describing the
attributes of a document. Table 3.2 shows a corresponding record of an equivalent
database that may be used to store all the data about books. One can clearly see
the parallels between the two. Each attribute in an XML node becomes a field in
the schema. An important thing to note is that if the user wants to add any addi-
tional information about the book (e.g., getting an award), then the fixed schema
of the database will make it difficult to handle, whereas it is almost no effort for
XML data. Nevertheless, it can be seen that it is possible to store XML data in
relational databases (like DB2).

<book>
<title> Angela's Ashes </title>
<author> Frank McCourt </author>
<genre> Fictionalized Biography </genre>
<publisher> Scribner </publisher>
<synopsis> includes anecdotes and stories of Frank McCourt's

childhood and early adulthood </synopsis>
</book>

Management of XML data in traditional database systems is usually carried
out using one of the following techniques:

i. Stuffing: Here the XML data is stored in large objects using BLOBs (Binary
Large Objects type) in relational databases. In this case, the XML data is
usually stored or retrieved in its entirety.

ii. Shredding: Here the XML data is decomposed into multiple relational columns
and tables and is somewhat similar to the example shown in Table 3.2.

iii. Native XML Database (NXD) where the internal data model of the database
is based on XML documents which are not necessarily stored as text files.
Even the query syntax such as XQuery will be supported.

Table 3.2 Database Equivalent of the XML Example

Title Author Genre Publisher Synopsis

Angela’s
Ashes

Frank
McCourt

Fictionalized
Biography

Scribner includes
anecdotes and
stories of
Frank
McCourt’s
childhood and
early
adulthood

Platform as a Service: Storage Aspects 117

While some of these approaches may be effective for certain kinds of data
storage, hybrid applications that want to use both XML and non-XML data may
face a myriad of issues when such techniques are employed. For example, stuffing
XML data in large objects may not be effective if queries on parts of the data need
to be supported, as the entire document needs to be retrieved in such cases. Even
decomposing data into regular relational database rows and columns may result in
loss of flexibility and high conversion times. Finally, native XML databases are not
yet mature and may not provide the reliability that is already built into traditional
relational databases. pureXML tries to overcome these drawbacks by storing XML
documents as a DB2 column which is marked with an XML data type.

NOTE
pureXML Summary
• Stores XML documents as a DB2 column of type XML
• Data stored in original hierarchical form
• Efficient storage and retrieval methods
• Query via XQuery

The XML data type in pureXML is just SQL data which can be stored, queried
and accessed quickly. In this data type, the XML data is stored in its original
hierarchical form. pureXML is thus capable of the following:

i. efficiently storing and managing hierarchical structures seen in XML
documents

ii. efficiently transforming XML data into relational databases or creating a
relational view.

Additionally, pureXML can be queried using a standards-based query language
(XQuery) typically used to query XML, and can be accessed via popular APIs and
frameworks including JDBC, ODBC, PHP, .NET, Ruby on Rails, and Zend [32].

The hybrid database structure under pureXML can be viewed as shown in
Figure 3.27. Here, a client application can access either a regular relational database
table and/or XML data transparently using different types of queries: SQL queries,
a combination of SQL/XML queries, XQuery or a combination of SQL/XQuery.
The XML parser and the relational parser interfaces send the queries to a common
query compiler and optimization engine which subsequently accesses the relevant
part of the hybrid database (the table part or the hierarchical tree part) for insertion,
deletion, updates and queries.

Storage Architecture: In pureXML, the XML documents are stored on disk
pages as tree structures that reflect the XML data model [33]. XML data are
usually stored separately from the original table objects. In every row of the XML
an XDS (XML data specifier) object is stored that contains information on how
to access the tree structure on the disk (see Figure 3.28). Storing XML data sepa-
rately removes the requirement of stuffing or shredding the XML data,

118 CHAPTER 3 Platform as a Service

maintaining its natural and versatile hierarchical structures. Thus, XML is a data
type in DB2, just like any other SQL data type, except its storage mechanism. It
may be noted that XML schema is not required in order to hold an XML column
and schema validation is optional.

Creating a database table with XML datatype: To illustrate with a simple
example, take the hypothetical case of a hybrid database that stores information

Client App

XML db interface Relational db interface

DB2 Engine

XML ReInI. db

XQuery/SQL/XML

FIGURE 3.27

A view of a hybrid database.

books

bookID book details

FIGURE 3.28

Storage mechanism in pureXML.

Platform as a Service: Storage Aspects 119

about books for Pustak Portal. For every book, in addition to an identification
number, certain information about every book is stored as XML data. Such a
hybrid database can be created using the following command:

CREATE table books (bookID char(32),. . . , bookDetails xml);

After creating the database, the following are details about entering data into
the database, querying the database, and updating records [34, 35].

Entering XML data into the database: XML data can be entered into a
table created with XML data types using the INSERT statement. If the database
needs to be populated with a large number of XML documents, the IMPORT
command can be used. For example, the following code fragment demonstrates
how an XML document can be inserted into an XML column of a DB2 database
on-the-fly.

INSERT INTO books (bookID,...,bookDetails) VALUES (ISBNxxxxx, ...,
XMLPARSE(' <book>
<title> Angela's Ashes </title>
<author> Frank McCourt </author>
<genre> Fictionalized Biography </genre>
<publisher> ... </publisher>
<synopsis> ... </synopsis>

</book>'
));

While inserting data into a column of DB2 which is of XML data type, it is
checked whether the data is well-formed; that is, whether it conforms to certain
syntax rules specified in the W3C standard for XML. The XMLPARSE keyword is used
to enforce this. However, the XMLPARSE keyword is optional as it is implicitly called
every time XML data is populated in the database. When used explicitly, certain
additional options can be specified (e.g., to preserve/strip whitespace) along with the
keyword.

Querying XML data: As stated earlier, DB2 supports query languages that
help access data using either SQL, XQuery (a functional language which is built
on XPath), a combination of SQL/XML or a combination of XQuery and
embedded SQL. An application can employ both SQL and XQuery/XML and a
single query can encompass both kinds of queries. The results of queries can
either be relational, XML or a combination of both. DB2 also contains a set of
built-in functions to be used for XML data. They fall into the categories of DB2-
defined and XQuery-defined functions. Examples of each of these combinations
are given in the subsequent examples.

DB2-defined functions need to use db2-fn as a prefix to use the proper namespace.
The two main functions available are called xmlcolumn and sqlquery. xmlcolumn is
used to extract XML documents from a XML column of a DB2 table while sqlquery
enables SQL queries to be embedded inside XQuery. For example, the following code
retrieves the entire column of bookDetails from the books database.

XQUERY db2-fn: xmlcolumn('BOOKS.BOOKDETAILS')

120 CHAPTER 3 Platform as a Service

To access the author names from the XML documents stored in the books
table, the following XQuery can be used:

XQUERY
for $d in db2-fn: xmlcolumn('BOOKS.BOOKDETAILS')/book/author
return $d;

The query returns the following answer:

<author> Frank McCourt </author>

The following is an example of embedded SQL within XQuery, where the
author for a book with a particular bookID can be selected. Here, the sqlquery
function provides the option to give the SQL full select as an input.

XQUERY db2-fn: sqlquery (
'SELECT bookDetails FROM books WHERE bookID = ...'
)/book/author;

XQuery-defined functions do not need a prefix. The functions supported fall
broadly in the categories of string functions (e.g., compare, concat), boolean func-
tions (e.g., not, zero-or-one), number functions (e.g., abs, floor, ceiling), date
functions (e.g., current-date, implicit-timezone), sequence functions (e.g.,
count, last-index-of), QName functions and node functions. XQuery also sup-
ports FLWOR (for, let, where, order by and return) expressions. We can also
query via a combination of SQL/XML commands which allows XQuery expres-
sions and commands to be embedded in SQL. Some of the useful commands
under this include XMLQUERY and XMLTABLE. While XMLQUERY allows an XML
query to be embedded in SQL, XMLTABLE generates tabular output from XML
data, which is useful for providing a relational view. An example of XMLQUERY fol-
lows, where XMLEXISTS returns a boolean value depending on whether a certain
attribute is present or absent.

SELECT bookID, XMLQUERY('$c/book/author'
passing books.bookDetails as "c")

FROM books
WHERE XMLEXISTS('$d/book/title'

passing books.bookDetails as "d")

Updating XML data: In order to update the full XML document stored in the
XML column of a DB2 database, one can use the UPDATE command available
in SQL as shown below:

UPDATE books SET bookDetails = XMLPARSE(DOCUMENT (
...

))
WHERE bookID = ...

To update parts of the XML document one can retrieve the entire document,
modify it as required and consequently use the SQL UPDATE command to replace
with the new version.

Platform as a Service: Storage Aspects 121

NOTE
Advanced pureXML Features
• XML indexing
• XML validation
• XML shredding
• Full-text search

Advanced Features of pureXML
In addition to the basic database operations described previously, pureXML
provides several features for better manageability, correctness and speed and effi-
ciency of access of the stored XML data. This includes the use of XML indexing,
validating the XML data against a pre-defined XML schema, shredding XML data
into relational tables and allowing for powerful XML full-text search.

XML indexing is a mechanism to speed up queries for XML documents. These
indexes provide direct access to intermediate nodes of the hierarchical tree structure
instead of at the root of the tree. This speeds up the queries but may slow down
other operations like insert, delete and update. In addition, extra storage is required
to store information for indexing.

The XML validation process checks whether the structure, data types, and
content of an XML document are valid. The XML validations are carried out
against a pre-registered XML schema. The following command shows how a
document can be validated against a pre-registered schemaID.

INSERT INTO books (bookID,...,bookDetails) VALUES (..., ...,
XMLVALIDATE(XMLPARSE (

'<book> ... </book>') ACCORDING TO XMLSCHEMA ID schemaID))

XML shredding: DB2 provides the functionality to decompose XML data such
that they can be stored in regular columns as part of the relational database table. It
uses an annotated XML schema document that describes the decomposition rules.
The annotations point to which part of the traditional relational database table the
corresponding parts of the XML data should reside in. As in schema validation, the
schema documents that describe the decomposition must also be registered in the
XML Schema Repository (XSR). The following command can then be issued to
decompose an XML document:

DECOMPOSE XML DOCUMENT <xml-doc-name> XMLSCHEMA <xml-schema-
document>

In addition to supporting XQuery where text searches are simple substring
matches, DB2 supports an advanced full-text search mechanism via the Net Search
Extender (NSE) engine. NSE can search full-text documents stored in a DB2
database using SQL queries. NSE does not employ sequential searching of the text
which can become inefficient. Instead, using a text index, which typically consists of

122 CHAPTER 3 Platform as a Service

significant terms that are extracted from the text document, it can carry out efficient
and fast searches over large volumes of text. For full-text search on its XML
columns, one needs to run the command:

DB2TEXT ENABLE DATABASE FOR TEXT CONNECT TO booksdb
DB2TEXT CREATE INDEX ind FOR TEXT ON books(bookDetails) CONNECT TO
booksdb

Using IBM Data Studio to Enable DaaS
As seen from the description in the previous section, pureXML enables the developer
to have a data abstraction at the semantic or application layer with operations using
XML data used in the application. This section describes how one can now
enable the pureXML-enabled DB2 to be hosted on the cloud, in the form of Data As
A Service (DaaS). Before describing the details of IBM Data Studio, a brief
overview of service-oriented architectures is called for.

NOTE
IBM Data Studio Components
• Data Project Explorer: develop and deploy DaaS services and clients
• Data Source Explorer: by the database administrators for managing DB2 instances and

databases.

Service-oriented Architectures
Every application hosted on the cloud exposes web service APIs (using protocols
such as HTTP, REST, SOAP) for web clients (either on-premise applications or
other co-operating applications) to access its functionality. While this is common,
most of these applications also follow a Service-oriented Architecture where the
internal components of the application too are exposed as web service APIs (though
may not be publicly available). The communication among these components will
be using web service calls and so any internal change in the individual components
will not affect the rest of the modules. It also enables independent maintenance and
versioning. More importantly, this design is key to achieving scale out of the appli-
cation as seen in Chapter 6.

Web services interoperate with a formal contract that is defined using Web
Services Description Language (WSDL). WSDL is language independent and
implementations based on C# and Java EE for working with WSDL are already
available. In fact, legacy systems written in COBOL can also be web service
enabled with WSDL. WSDL includes knowledge on how to structure request/
response messages, how to interpret these messages, and what kind of protocol
(SOAP/REST/HTTP) to use in order to invoke the service. Traditionally SOAP
(Simple Object Access Protocol), a protocol that defines the structure of the data
payload while invoking an other service as an RPC (remote procedure call)
mechanism, has been used to implement web service interfaces. More recently,

Platform as a Service: Storage Aspects 123

there is a drive towards using REST (Representational state transfer) which uses
well known standard HTTP methods of GET, PUT, POST, DELETE to provide a
Web API. Most often Web API implementations in both SOAP and REST use
XML for specifying the parameters of the remote procedure call.

Data as a Service (DaaS) is a service delivery model that provides structured
data as a service. So, an application designed with service-oriented architecture
can now share data among the different components by enabling DaaS over a
database. pureXML can be hosted as a DaaS and therefore enables web clients
(either on-premise or cloud-hosted applications) to manipulate data stored in a
DB2 hybrid database. pureXML uses a software framework called Web Services
Object Runtime Framework (WORF).

WORF and DADX
WORF is a software environment provided by IBM to create simple XML-based
web services to access DB2. It uses Apache SOAP 2.2 and its protocol extension
called Document Access Definition Extension (DADX). A DADX document can
be defined by SQL commands and each document defines a web service under
WORF. WORF supports resource-based deployment, wherein a web service is
just defined in a resource file and placed in a specific directory of the web applica-
tion. When a client requests that resource file, WORF loads the file and enables a
web service as per the specification in the resource file. Users familiar with Servlet
programming can see an analogy of this to WAR files deployed in web application
servers. If the resource file is edited, WORF detects that there were changes to the
file and so recreates a new version of the web service. This makes web service
deployment very simple. The resource file is in DADX format, which is described
later in this section.

DADX is an XML file that describes the web services that the users can access.
When the web application server receives a request (in the form of a call to a
method/query) from a client, WORF looks up the DADX file, and tries to locate
the requested method in the file. After the requested method is located, the queries
or stored procedures associated with the requested method are executed. The fol-
lowing code fragment demonstrates a sample DADX file consisting of a method
name getAuthor. A client request with the method name getAuthor() is routed
through this DADX file by WORF, which subsequently results in the answer
“Frank McCourt” to be sent to the client. Here XMLSERIALIZE converts the query
output as a string for consumption by the client.

<operation name = "getAuthor">
<query>

<SQL_query>
SELECT XMLSERIALIZE (XMLQUERY('$c/book/author/text()'

passing books.bookDetails as “c”) as VARCHAR
(64))

FROM books
WHERE XMLEXISTS('$d/book/title'

passing books.bookDetails as "d")

124 CHAPTER 3 Platform as a Service

</SQL_query>
</query>

</operation>

NOTE
Summary of WORF functionality
• Connect to the DB2 database
• Execute the query statements and stored procedures to access the hybrid database
• Generate WSDL, XML schema and test pages for use and verification of the created web

service

WORF supports an environment by which XML-based web services can be
used to access DB2 data and stored procedures. WORF uses the DADX definition
file to provide an implementation of a web service. This is done using a servlet
that accepts a web service invocation over SOAP, an HTTP GET, or an HTTP
POST. This servlet implements the service by accessing DB2, invoking the SQL/
XML/XQuery operation defined in the DADX file, and returning the results as a
response. WORF works on Websphere Application Server and Apache Tomcat.
The framework allows developers to bypass the effort of writing and developing
the web services ground-up, thereby increasing their productivity. WORF is used
not only at runtime for wrapping a database query/access operation as a web service
in the context of an invocation; it also generates all that are required to deploy the
required service. WORF can automatically generate a Web Services Description
Language (WSDL) file which can be published in a UDDI registry. A view of how
WORF/DADX/DB2 interacts with each other is given in Figure 3.29. IBM has
a tool that implements WORF and supports generation of DADX, called IBM
Data Studio.

IBM Data Studio
IBM Data Studio [36, 37] is a tool for database administration and database develop-
ment with an Eclipse-based GUI. It can run on Linux and Windows and is part of the
IBM Integrated Data Management portfolio of products. The Data Project Explorer
component of Data Studio can be used for developing SQL scripts, writing XQuery,
stored procedures and subsequently deploying on an application server like
Websphere Application Server (WAS). The Data Source Explorer is used by the
database administrators for managing DB2 instances and databases. One can experi-
ment with pureXML by downloading DB2 Express-C, Websphere Application Server
and Data Studio [38]. DB2 Express-C is a version of DB2 Universal Database Express
Edition (DB2 Express) for the community, which is completely free to download,
develop, deploy, test, run, embed and redistribute. DB2 Express-C is available for
Linux and Windows running 32-bit or 64-bit hardware. The WebSphere Application
Server Community Edition is available at [39]. Pre-built Amazon Machine Images of
IBM DB2 Express-C are available at http://www.ibm.com/developerworks/
downloads/im/udbexp/cloud.html [40].

Platform as a Service: Storage Aspects 125

http://www.ibm.com/developerworks/downloads/im/udbexp/cloud.html
http://www.ibm.com/developerworks/downloads/im/udbexp/cloud.html

Data Studio takes care of all the JDBC code required to access/query DB2 data. It
also (internally) generates a WSDL file for each Data Web Service that is created. In
addition, it creates the runtime tooling required for clients to access the deployed web
service using SOAP/HTTP/REST-style bindings, generate the code necessary to look
up the operation names in WSDL for the corresponding DB2 access queries. And
dispatch results. The deployed service can also be tested before being published for
use by a larger community. Thus, IBM Data Studio provides a unified framework to
the user in which (s)he can develop web services and database applications very
quickly and easily. Functionalities like WORF and specification of files like DADX
are transparently handled. Finally, the generated web services are packaged in the
form of a ready-to-use web application for clients to exploit. The Web Services
Explorer component of Data Studio can be used to test the generated web services. It
can test the invocation of these services over SOAP or other protocols.

APACHE HADOOP
One of the best-known cloud platforms for big data today is Apache Hadoop.
Many research papers have been written describing the experiences of porting
large data-intensive applications onto this platform. Hadoop solves a specific class
of data-crunching problems that frequently comes up in the domain of Internet

Hybrid DB2

Web App Server

WORF

SOAP SOAP

getAuthor() ‘Frank McCourt’

DaaS Client

<DADX>

<operation name = “getAuthor”>

<query>

<SQL_query>

</SQl_query>

</query>

</operation>

</DADX>

SELECT XMLSERIALIZE (XMLQUERY(‘$C/book/author...))

FROM books

WHERE XMLEXISTS(‘$d/book/title’...)

FIGURE 3.29

WORF/DADX interaction around pureXML.

126 CHAPTER 3 Platform as a Service

computing and high-performance computing. At the time of this writing, Hadoop
held the world record for the fastest system to sort large data (500 GB of data in
59 sec and 100 terabytes of data in 68 seconds). Along with the ability to analyze
large data sets, Hadoop provides a solution for storing these datasets efficiently,
and in a way that is highly available. Hadoop is optimized for batch-processing
applications, and scales to the number of CPUs available in the cluster.

Hadoop was first started as a part of the Apache Nutch project, an open source
web search engine with developer APIs. After Google published information
about its MapReduce technology behind its search engine [41, 42], Nutch was
rewritten to use MapReduce. Later, the MapReduce parts were extracted into a
separate project called Hadoop, as it was found that MapReduce was a widely
applicable technology. The creators of this initial version of Hadoop were Doug
Cutting and Mike Cafarella in 2004. So, in 2006, the Hadoop project was offi-
cially announced as a standalone open source project, hosted by Apache Software
Foundation and sponsored with many developers from Yahoo!.

NOTE
Key Subprojects of Hadoop
• Hadoop Common
• Hadoop Distributed File System
• MapReduce
• Pig, Hive, Hbase

Overview of Hadoop
Hadoop has three components – the Common component, the Hadoop Distributed
File System component, and the MapReduce component. Each of these compo-
nents is a sub-project in the Hadoop top-level project. The Common sub-project
deals with abstractions and libraries that can be used by both the other sub-projects.
A widely used and a widely implemented interface in the Common sub-project is
the FileSystem interface. The Hadoop Distributed File System is a file system for
storing large files on a distributed cluster of machines. Hadoop MapReduce is a
framework for running jobs that usually does processing of data from the Hadoop
Distributed File System. Frameworks like Hbase, Pig and Hive have been built on
top of Hadoop. Pig is a dataflow language and execution environment over
Hadoop. Hbase is a distributed key-value store which supports SQL-like queries
similar to Google’s BigTable [43] and Hive is a distributed data warehouse to man-
age data stored in the Hadoop File System. There are many real-life applications of
Hadoop. Please refer to http://wiki.apache.org/hadoop/PoweredBy for a complete
list of applications and organizations using it.

This section gives an introduction to the MapReduce platform with a simple
example and high-level architectural details of MapReduce and the Hadoop
Distributed File System (HDFS). A detailed description of MapReduce from a

Apache Hadoop 127

http://wiki.apache.org/hadoop/PoweredBy

programming perspective is given in Chapter 5, where hints and approaches to
design an application to work efficiently on the MapReduce framework are
described with multiple examples. A further detailed description of the internal
architecture of MapReduce and HDFS is presented in Chapter 6 on Addressing
the Cloud Challenges.

MapReduce
Hadoop requires the cloud applications written on its platform to use a new
programming model called MapReduce [42]. This model is very useful to express
the inherent parallelism within an application and take advantage of the parallel pro-
cessing support provided by Hadoop for fast and efficient execution. MapReduce
works in two phases – the Map phase and the Reduce phase. To write an applica-
tion using the MapReduce framework, the programmer just specifies two functions –
the Map function and Reduce function. The inputs to these two functions are simple
key-value pairs.

The processing flow for a MapReduce program is given below:

• The input data is split into chunks, each of which is sent to different Mapper
processes. The output of the Mapper process includes key-value pairs.

• The result of the Mapper process is partitioned based on the key and is sorted
locally.

• The Reduce function gets this sorted key-value data for one key, processes it
and generates the output key-value pairs.

An example will make things clear.

A Simple Example of MapReduce
An example that uses MapReduce APIs in Java to analyze sales data of Pustak
Portal is described next. The program described finds the total sales of each
book and picks the book that has the maximum number of sales per day. The
input is a log file that lists the sales of every book from different dealers (one
book per line) and the MapReduce program finds the total sales per book. The
Map function gets key-value pairs where key is the line number, and it outputs
key-value pairs with key as the ISBN of the book. The shuffle sorts the key-
value pairs and hands over all the sales data per book (per ISBN) to the reduce
function, which computes the sum based on its input key-value pairs. More
detail follows.

Let us assume that the data found in the log file is in the following format:

ISBN1234, name of book1, author, dealer name, location, 10, ...
ISBN3245, name of book2, author, dealer name, location, 20,
...
ISBN9999, name of book1111, author, dealer name, location, 32, ...

The application works in two phases. In the map phase, the log file is prepro-
cessed to extract only the interesting fields of the record. The preceding lines in

128 CHAPTER 3 Platform as a Service

the log file are presented to the Map function in the form of key-value pairs as
shown in the code that follows. Here the keys are the line offsets within the file
which is ignored by the Map function.

(0, "ISBN1234, name of book1, author, dealer name1, location, 10, ...")
(101, "ISBN3245, name of book2, author, dealer name, location, 20,")
(250, "ISBN1234, name of book1, author, dealer name2, location, 110, ...")
...
(1189, "ISBN9999, name of book1111, author, dealer name, location, 32")

So, the Map function is very simple in this case. A sample output of the Map
function will be:

(ISBN1234, 10)
(ISBN3245, 20)
(ISBN1234, 110)
...
(ISBN9999,32)
...

Now, the MapReduce framework processes the output of the Map function
before sending it to the Reduce function. It sorts and groups the key-value pairs
by key. So, the Reduce function gets consolidated data for each book (based on
the ISBN), like this:

(ISBN1234, [10,110])
(ISBN3245, [20])
...
(ISBN9999, [32,22,112])

The Reduce function just needs to go through one line at a time and add up
the different elements in the list to create the final key-value pair of results.

The actual Java code to do the functions that were listed previously is given in
the Map function code that follows. There three key methods in the application –
the Map function that implements the Mapper interface to define the map()
method, the Reduce function that implements the Reducer interface to define the
reduce method and the Main method that fires the map reduce job.

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.Reporter;

public class SalesConsolidatorMap extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable>

{

Apache Hadoop 129

public void map (LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter

reporter)
throws IOExcpetion {

String line = value.toString();
String [] splitStr = line.split(",");
String isbn = splitStr[0];
int count = Integer.parseInt(splitStr[5]);
// Output key value pairs with selective information
output.collect(new Text(isbn), new IntWritable(count));

}
}

The Mapper interface has four formal parameters for input key, input value,
output key and output value. Instead of using built-in Java types, Hadoop provides
its own set of basic types to support network serialization (and hence optimized
distributed application execution). The map method is passed a key and a value,
along with additional parameters for outputting information. The output of the
Map function is realized in the call to output.collect method, which writes out
the ISBN to count key-value pairs.

The reduce method is also written along similar lines. The input parameters of reduce
correspond to output parameter types of the map method (Text and IntWritable)
as shown in the following snippet. The summation inside the loop is performing the
reduce function and again the output.collect method is used to output the consoli-
dated key-value pairs. Please note that the output format of this reduce function can
actually be passed to another reduce function for hierarchical consolidation.

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class SalesConsolidatorRed extends MapReduceBase
implements Reducer<Text,IntWritable, Text, IntWritable>

{

public void reduce (Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter

reporter)
throws IOExcpetion {

int sum = 0;
while (values.hasNext()) {
// Reduce function is performed here

sum = sum + values.next().get();
}

130 CHAPTER 3 Platform as a Service

// Output key value pair
output.collect(key, new IntWritable(sum));
}

}

The following code snippet gives the code to execute the MapReduce task.
The description of the job is specified in the JobConf object. The mapper and
reducer classes are also set in the same Jobconf object and the runJob method
starts off the map-reduce activity.

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class SalesConsolidator {
public static void main(String[]args) throws IOException {

if (args.length != 2) {
System.err.println(“Please give input path and output path as
arguments”);

System.exit(−1);
}
// Define the new job
JobConf job = new JobConf(SalesConsolidator.class);
job.setJobName(“Sales Consolidation”);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.addOutputPath(job, new Path([args[1]]);

// Set Mapper and Reducer functions for this job
job.setMapperClass(SalesConsolidatorMap.class);
job.setReducerClass(SalesConsolidatorRed.class);

job.setOutputKeyClass(text.class);
job.setOutputValueClass(IntWritable.class);

// Run the MapReduce job
JobClient.runJob(job);
}

}

The previous sample code uses Release 0.20.0 of MapReduce API. Please
refer to http://hadoop.apache.org for the latest version of the API, download
and installation instructions. Now, to test and execute the previous sample appli-
cation, one can use the following commands. The input log files are in the
directory data/sales/input and output will be in the data/sales/consoled
directory,

Apache Hadoop 131

% export HADOOP_CLASSPATH=build/classes
% hadoop SalesConsolidator data/sales/input data/sales/consolid

Running non-Java MapReduce applications
The MapReduce framework in Hadoop has native support for running Java applica-
tions. It also supports running non-Java applications in Ruby, Python, C++ and a
few other programming languages, via two frameworks, namely the Streaming fra-
mework and the Pipes framework. The Streaming framework allows MapReduce
programs written in any language, including shell scripts, to be run as a MapReduce
application in Hadoop. The basic assumption that is made here is that the programs
can consume their input via stdin and they output via stdout. The MapReduce
framework forks the Streaming program, sends the keys/values on the process’s
stdin, and captures output from the process’s stdout. The Pipes library in
MapReduce, on the other hand, provides C++ APIs for writing MapReduce applica-
tions. This is believed to provide better performance than Streaming. It is very use-
ful when there are legacy applications written in C or C++, and one wants to move
them to the MapReduce model.

Dataflow in Map Reduce4
In Hadoop MapReduce, inputs are referred to as splits. It is the job of the application
writer to define the splits for his application. For example, if the log file containing
sales information is a large file on which sales consolidation needs to be performed
(as in the previous example), the application writer can define the splits as reasonably
large chunks of the file. The splits information is included in the job submission
request. Each Map task gets to work on one split, and produce the output. Each Map
task produces the outputs for all Reduce tasks. Furthermore, the output per Reduce
task is sorted via a user provided comparator on the Map output key data type. The
number of outputs is equal to the number of Reduce tasks. As Map tasks complete,
their outputs are made available to the Reduce tasks of the job. The process of trans-
ferring Map outputs to the Reduce tasks is called Shuffle. In the Shuffle phase, the
Reduce tasks pull sections of the Map outputs relevant to them (typically all pairs
with same key value). Reduce tasks process their inputs, and produce the final output
(see Figure 3.30).

MapReduce can be viewed as a distributed sort engine. If the input were just
passed through the framework with an Identity Map function and an Identity
Reduce function defined for the corresponding job, the output would be sorted.
More details of this and other such important algorithms are described in the sec-
tion titled Map Reduce Revisited in Chapter 5.

The main advantage of using the MapReduce paradigm is that the application
is now written in a manner that explicitly identifies portions of the application
that can be executed in parallel. For example, as seen in Figure 3.30, the

4Contributed by Mr. Devaraj Das from Apache Hadoop PMC.

132 CHAPTER 3 Platform as a Service

operations on key-value pairs with the different keys can be done in parallel.
Similarly Map tasks if working on different splits can work in parallel. The differ-
ent Map and Reduce tasks can therefore be executed as independent threads or
processes on a cluster of compute nodes to get maximum performance.

Hadoop MapReduce Architecture
The architectural components of Hadoop MapReduce that orchestrate the different
Map and Reduce tasks to work in parallel are shown in Figure 3.31. The key

Input 0 Input 1 Input 2

Map 0 Map 1 Map 2

Shuffle

Reduce 0 Reduce 1

Out 0 Out 1

FIGURE 3.30

Dataflow in MapReduce.

JobTracker

TaskTracker TaskTrackerTaskTracker

Tasks

A node

FIGURE 3.31

Architecture components of MapReduce.

Apache Hadoop 133

processes in the system are the JobTracker, the TaskTracker and the different Tasks.
These are described next.

• The JobTracker: The JobTracker is the central authority for the complete
MapReduce cluster, and is responsible for scheduling and monitoring
MapReduce jobs, to keep track of the node membership status of a MapReduce
cluster, and to respond to client requests for job submissions and job status. The
JobTracker can be configured to have multiple queues and a chosen job
scheduler. Some schedulers that are in use are the CapacityScheduler, and the
FairScheduler. The FairScheduler is a simple scheduler with a single queue
while the CapacityScheduler supports multiple queues with different priority
and guaranteed resource capacities [44].

• The TaskTracker: The TaskTrackers are the workers. The TaskTracker accepts
Map and Reduce tasks from the JobTracker, launches them and keeps track of
their progress over time. The TaskTracker reports the progress of the tasks to the
JobTracker. The TaskTracker keeps track of the resource usage of tasks (currently
only memory), and kills tasks that overshoot their memory limits.

• The Tasks: Tasks run as separate processes. They have framework code
that does some setup and teardown, between which runs the user code. The
tasks are expected to report progress periodically to their parent TaskTracker.
The tasks run in their own sandboxed environment.

Since the Map and Reduce tasks execute in parallel, the computation of
MapReduce can be scaled up as many more nodes are added into the cluster (see
Chapter 6 to understand the theoretical limits of scale up). Now, since all tasks
operate on key-value pairs, the storage has to be efficient and high performing
with high throughput. That is the motivation of another Hadoop project called
Hadoop Distributed File System (HDFS), a distributed file system that enables a
fast retrieval amd updates, described next.

Hadoop Distributed File System
To store the input, output and intermediate key value pairs Hadoop uses a file sys-
tem interface that can be implemented by anyone and plugged in as a file system
in Hadoop. There are a number of file systems already part of the Hadoop distri-
bution. They include the Hadoop Distributed File System, S3 file system, Kosmos
file system, and others. Each file system serves some specific lower level storage.
The Hadoop Distributed File System is based on ideas in The Google file system
[41].

The Hadoop Distributed File System (HDFS) is a distributed file system that
provides high throughput access to data. The applications of HDFS include
MapReduce and other such platforms where a large storage based on commodity
hardware is required. The system is optimized for storage of very large files, high
availability and reliability of data. This section gives an overview of HDFS with
details of its architecture and API for accessing it.

134 CHAPTER 3 Platform as a Service

HDFS API
Applications can use HDFS file systems using the standard file system APIs. One
of the main differences of HDFS with respect to other distributed file systems is
that it provides simple IO centric APIs and does not attempt to provide a full-
blown Posix API set. In particular, HDFS does not provide consistency over reads
and writes; i.e., if multiple nodes read and write the file at the same time, the data
seen by the various nodes may not be consistent, unlike a POSIX compliant file
system. Additionally, it exposes the location of blocks of the files. This feature is
leveraged by Hadoop’s MapReduce implementation to co-locate computations
with data needed for the computation.

As mentioned before, Hadoop uses a file system interface that can be implemen-
ted by anyone and plugged in as a file system in Hadoop. Applications specify the
file system using the file system’s URI. For example, hdfs:// is used to identify
the HDFS filesystem.

HDFS Example: Finding the Location of Data Blocks
As HDFS is written in Java, HDFS files can be read and written just like any
other Java file using Java DataInputStream and DataOutputStream APIs such as
readUTF(). As noted earlier, one of the key features of Hadoop is to schedule
tasks at nodes where the data is stored. The HDFS client also tries to read data
from the nearest node in order to minimize network traffic. The following code
fragment illustrates how to find the hosts that have a particular data block.

import java.io.File;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
public class HDFSExample {
public static void main (String [] args) throws IOException {

String exampleF = "example.txt";
int BlockNo = 0;

/*1*/Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);

/*2*/Path fPath = new Path(exampleF);
/*3*/FileStatus fStat = fs.getFileStatus (fPath);
/*4*/int fLen = fStat.getLen();
/*5*/BlockLocation[] blockLocs = fs.getFileBlockLocation (fPath,

0, fLen);
}

Statement 1 and the following statement initialize the interface to the HDFS
file system. Statement 2 gets a pointer to the desired file (called “exampleF”).
Statement 3 gets a FileStatus object. One of the methods of this object is the

Apache Hadoop 135

getlen() method, which is invoked in statement 4 to get the length of the file in
blocks. Statement 5 then invokes the getFileBlockLocation () method, which
has three parameters. The first parameter, fPath, specifies the file about which
information is desired. The second and third parameters specify the region of the
file (start block and end block) for which the information is desired, In the exam-
ple, information about the whole file is queried. The getFileBlockLocation()
method returns an array of BlockLocation. After the call, blockLocs[i] contains
information about the location of the ith block; blockLocs[i].getHosts() returns
an array of String that contains the names of the host nodes which have a copy
of the ith block in the region. This information can now be used to move compu-
tation to those nodes if that is possible in the system. More information about
these APIs is available at [45].

As mentioned before, this section only gave an introduction to usage of Map-
Reduce and HDFS platforms. An in-depth study of the MapReduce programming
paradigm is given in Chapter 5 and some advanced topics in the internal
architecture of MapReduce and HDFS are discussed in Chapter 6.

MASHUPS
Thus far, this chapter described multiple platforms meant for advanced develo-
pers to develop cloud applications. This section looks at simple ways of creat-
ing cloud applications using platforms that provide visual programming – that
even a non-expert end user can use to develop personally relevant applications.
The Web has a plethora of data and services and end users may want to inte-
grate these to make it usable in a manner that they find most useful. As an
example, when planning a trip, a web site may provide a list of flights between
certain destinations, and the user may want to now sort them by flight time or
price – but only for airlines that he usually travels with. Another example could
be a user who wants to combine data from various sources with map informa-
tion to visualize, say, available apartments on a world map and be notified
when a certain type of apartment is available for sale. Data Mashups, a technol-
ogy that enables such simple integration of information from multiple web
sources to enable end users to create Cloud-hosted personal applications, is
described in this section.

Mashups are web sites or software applications that merge separate APIs and data
sources into one integrated interface/experience. They thus democratize data access
by moving control closer to users who then combine existing data sources without
owners being involved [46]. Such situational (short-lived) applications filter, join and
aggregate data from multiple sources to serve a specific need. An important factor
enabling Mashups is that many web services (e.g., Yahoo!, eBay and Amazon) have
opened their systems to external use through public APIs and Web feeds (e.g., RSS
or Atom). This enables third-party developers to integrate the basic data and services

136 CHAPTER 3 Platform as a Service

that Web platforms provide and make information more useful than it would be on its
own. Yahoo! Pipes is one such platform for end-users to create Mashups via visual
programming, and is described next.

Yahoo! Pipes
Yahoo! Pipes (or Pipes for short) is an interactive tool that enables combining many
data feeds (e.g., RSS Atom and RDF) into a single aggregate and then transforming
them through web service calls (e.g., language translation, and location extraction).
They are conceptually similar to the well-known process communication tool in Unix
called pipes. In the same way that Unix pipes allow data to be piped in sequence
through multiple programs, Yahoo! Pipes can also be used to perform a series of data
operations on multiple data sets. However, with Yahoo! Pipes, developers can manip-
ulate data that’s available on the web, and not just data locally available on the sys-
tem. Yahoo! Pipes are also not just limited to one input and one output (like Unix
pipes). Certain operators can have more than one input.

While Unix pipes allow for the sequential processing of data, Yahoo! Pipes
allow users to define a data processing pipeline, which can be a data flow graph,
as illustrated in the examples later in this section. The graph is produced by inter-
connecting data sources and operators. The data sources for a Pipe consist not
only of data feeds from a web site, but also any data that can be converted into a
feed (such as a file, or user input). The operators are pre-defined by Pipes, each
performing a certain task (e.g., looping, filtering, regular expressions, or counting).
Once a pipe is built, it can be re-used as a component in another pipe until the
ultimate mashup is created. One can also store the pipe and attach it as a module
to MyYahoo! page or Yahoo! front page.

It is common to create Pipes for combining interesting news feeds. Other
examples include feeds containing (i) all the apartment listings near parks or schools;
(ii) all eBay listings within a certain price range; (iii) process the Craigslist feed and
identify location information (geocodes) to augment the feed with a link that displays
a property’s address by passing it to Google Maps. More details on how one can
create such simple personalized integration of information is described next.

Figure 3.32 gives the screenshot of the Yahoo! Pipes web page, with insets
showing an enlarged version of the menus for better readability. The rest of this
section describes a simple example first and then provides a more comprehensive
description of the various data sources and operations that Pipes enables.

A Simple Yahoo! Pipe to Generate City News
The following example pipe is called CityNews and generates a feed containing news
about a city. It is very simple but demonstrates the power of Pipes. The first step is to
go to the Yahoo! Pipes web site at http://pipes.yahoo.com, and click on the My
Pipes link. If there are no pipes yet, this will bring up an editing webpage for the
Pipes UI where the first pipe can be created, as shown in Figure 3.32.

Mashups 137

Select RSS feeds: The next step is to choose the web feeds to be combined, and
aggregate them into a single feed. On the left-side menu bar, under Sources is a box
called Fetch Feed. Dragging this box onto the editing field will cause a URL box to
appear as shown in Figure 3.33, into which the URL of the desired RSS feed can be
entered.5 In the example, news about a city is needed, so the URL of the RSS feed of
the government web site can be used (see Figure 3.34). The example shows how to
add the RSS feed of California. After the feed has been added, the debugger says
there are 45 items in the feed. Additional URLs can be added either by dragging the
Fetch box or by clicking on the + sign in the Fetch box.

Combine RSS feeds: Finally, all the feeds can be combined using a Union
box. Such a box can be created by dragging the Union box under Operators in
the left side menu on to the editing field. The outputs of the Fetch boxes can
then be connected to the Union box as shown in Figure 3.34 by clicking and drag-
ging the mouse from point to point. The example uses Wikipedia as a source, thus
exemplifying the versatility of Pipes. The debugger now shows 112 items after the
union operation on the feeds.

FIGURE 3.32

Pipes editor UI.

5The URL of a site’s RSS feed can be found by clicking on the RSS icon in the URL box at any
web site with a feed.

138 CHAPTER 3 Platform as a Service

Filtering the Pipe: At this point, the pipe has four feeds, all with a hefty array
of daily headlines. That’s a lot of information to wade through every day. To limit
the data flow down to a manageable level, the Pipe can be filtered. This can be
done by dragging a Filter box onto the editing field from the Filter box under
the Operators category on the left-side menu bar. The output of the Union box is
connected to the input of the Filter box, and the output of the Filter box with
the input of the Pipe Output. The choices in the title drop-down menu on the
Filter box update when this connection is made. The Filter box allows filtering
of the content in numerous ways which can be selected by clicking on the title
and contains boxes. Assume that it is desired to monitor articles concerning
unemployment rate, technology, and California. The example in the picture shows
how to show feeds that contain these keywords. The debugger now shows 24
items after filtering from 112 items (see Figure 3.35).

FIGURE 3.33

Getting started.

FIGURE 3.34

Combining feeds.

Mashups 139

The Pipe can be saved by clicking Save near the top of the editing field, and
naming the Pipe. On the MyPipes page, clicking Publish allows the Pipe to be
made public.

Pipes Data Sources and Operations
To describe the operations and data sources Pipes provides, the Pipes editor UI is
used (see inset with heading operators in Figure 3.32), as it lists all the data
sources and operations available in the left side pane. The important and fre-
quently used sources and operations are described; a comprehensive list can be
found in the Yahoo! documentation as described later.

Sources: The sources available are shown expanded in Figure 3.32 as inset.
These include Fetch Feed, which takes as input a feed URL and returns the items in
the feed [47], as well as Feed Auto-Discovery, which takes as input the URL for a
web site, and returns the URLs of all the feeds discovered on the web site. The
Fetch Data module takes as input the URL of an XML or JSON file, attempts to
parse it, and extracts specified fields. The Fetch Page module returns the HTML
page specified by a URL as a string; while the Fetch CSV module allows the conver-
sion of a CSV file into a feed. Finally, the Yahoo! Local module allows searching
for services in a location (e.g., gyms in San Francisco) while the Yahoo! Search
module provides an interface to Yahoo Search.

An important source is the YQL source listed earlier. YQL is an SQL-like query
language that can be used to develop programs that process data available on the
web, where the native processing functionality present in Pipes is not sufficient. An
example is where it is desired to find an apartment in a town that also contains a
Pizza Hut. The most efficient way to do this would be to generate a list of apartments
and locations and Pizza Huts and locations, sort both on locations and merge. YQL is
described in detail in a later section.

FIGURE 3.35

Filtering the feed.

140 CHAPTER 3 Platform as a Service

User Inputs: Figure 3.32 also shows the user inputs that can be used in Pipes.
For brevity, only the expanded User Inputs part of the Pipes editor GUI are
shown; the rest are in Figure 3.32. The Text Input module takes text input by the
user and outputs a text string that can be used as input by other modules or opera-
tors [48], while the Private Text Input module is used for the input of confidential
text that should not be displayed, such as a password. The URL Input module
takes a URL input by the user and outputs a URL that can be used as input to a
module that expects a URL. The Location module accepts user input and outputs a
Location datatype that can be used as input to another pipe module. The Location
module also displays the quality of the location, which describes the accuracy on a
scale of 0 to 100 (with 100 being the most accurate).

Operators: Figure 3.32 shows the operators available in Pipes. It can be seen that
Pipes provide a powerful set of operators needed for string and data structure manipu-
lation. The Count operator counts the number of items in a feed. The Create RSS
operator creates an RSS feed from a non-RSS structure [49]. Regex allows pattern
matching and substitution based upon regular expressions; for details please see
Module Reference: Operator Modules [49]. The Union and Filter operators have
already been described in the example earlier. The Tail and Truncate operators
return the last and first N items from an RSS feed, respectively. The Split operator
splits a feed into two identical feeds. The Web Service operator sends Pipes data to a
web service in JSON format.

Similarly, the URL operators build a URL from various fields in Pipes data
[50]. The String operators perform string manipulations, such as tokenization,
substring, and pattern match [51]. The Date operators perform data extraction and
formatting [52]. The Location operators extract and format location information
[53], while the Number operators perform simple mathematical functions [54].

Yahoo! Query Language
The previous section describes Yahoo! Pipes, which allows combining and filter-
ing of data from the Web. While this is very powerful, for some applications, it
may be desirable to have data processing power comparable to that provided by
relational databases. The present section describes Yahoo! Query Language
(YQL), a service that allows developers to perform more powerful processing that
is comparable in power to relational databases.

YQL was developed by Yahoo! to encourage the creation of a developer com-
munity around Yahoo! data. There are thus YQL services for all Yahoo! data (e.g.,
Contacts from Yahoo! Mail). Additionally, non-Yahoo! services can also be
mapped to YQL. YQL is used internally by Yahoo! in a large number of Yahoo!
services (e.g., Yahoo! Homepage, and Search). This helps ensure its quality and
comprehensiveness.

The rest of this section first provides an overview of YQL, including a
description of the YQL Console, which allows testing of YQL statements.
This is followed by a YQL example that shows how to generate tweets about

Mashups 141

New York Times bestsellers published by Pustak Portal. The example also illus-
trates how YQL can be incorporated into Pipes.

YQL Overview
In the same way that relational databases view data as being stored in tables, YQL
allows the manipulation of data stored in Open Data Tables (ODT). To allow the
data in Yahoo! services to be processed by YQL, Yahoo! provides a mapping from
Yahoo! services to ODT. For example, the list of photographs stored on Flickr,
Yahoo!’s photo service, is available as an ODT. Many external web services, such
as Twitter, are also available as ODTs. A full list of such services can be found
from the YQL Console, as described in the rest of this section.

Figure 3.36 shows the YQL Console [55], which allows users to execute YQL
statements and examine the results. It is thus an important debugging and learning
tool. At the top of the console, there is an area where YQL statements can be typed
in. The figure shows the YQL statement show tables, which displays the tables
available. Below is a radio button which allows selecting XML or JSON as the
output. The output area contains a list of tables available. By default, it shows only
the Yahoo! tables; clicking on the Show Community Tables link on the right-hand
side shows the non-Yahoo! tables as well, including Facebook and Twitter.
The nyt (New York Times) menu item has been expanded to show the various tables
available, including the New York Times bestsellers (see Figure 3.37).

FIGURE 3.36

YQL console.

142 CHAPTER 3 Platform as a Service

YQL Example: Tweeting about New York Times Bestselling Books
To illustrate the usage of YQL and Yahoo! Pipes, the rest of this section describes
how to write a pipe that (i) pulls the list of bestsellers from the New York Times;
(ii) filters the books published by Pustak Portal; (iii) generates tweets about these
books (for purposes of publicity).

NOTE
YQL Example
• Access NYT ODT documentation
• Get authorization
• Test YQL statements in console
• Create pipe to get bestsellers
• Create pipe to loop over bestsellers and generate Tweets

<results>
<table name=”nyt.bestsellers” security=”ANY” src=http://www.

datatables.org/nyt/nyt.bestsellers.xml>
<meta>

<author>Sam Pullara</author>

FIGURE 3.37

Web services available as open data tables.

Mashups 143

<documentationURL> http://developer.nytimes.com/docs/
best_sellers_api</documentationURL>

</meta>
<request>

<select usesRemoteList=”true”>
<key name=”apikey” required=”true” type=”xs:string”/>
<key name=”listname” required=”true” type=”xs:string”/>
<key name=”date” required=”true” type=”xs:string”/>
<key name=”sort_order” type=”xs:string”/>
<key name=”sort_by” type=”xs:string”/>

</select>

Access ODT documentation, get authorization: As shown in Figure 3.37,
the New York Times bestseller list is available as the ODT nyt.bestsellers in
YQL. To extract the list of bestsellers, it is necessary to understand the API pro-
vided for accessing the table. This can be achieved by typing the YQL statement
desc nyt.bestsellers into the YQL console and pressing the Test button, or by
hovering the mouse over the nyt.bestsellers item and clicking the desc button
that appears. Either method produces the output shown in the code segment
Description of nyt.bestsellers table, where only the YQL console output is shown
for clarity. The documentationURL tag shows that the documentation for accessing
this table can be found in The Best Sellers API [56]. By accessing the documenta-
tion web site, it can be seen that it is necessary to register at the web site in order
to use the web site. Additionally, the parameters needed to formulate the query
(shown later) and their format can also be found. In addition to the name of the
bestseller list (various bestseller lists, such as Hardcover Fiction are available), it
can be seen that an api_key(needed for authentication) needs to be specified. The
web site specifies that the api_key is generated during registration.

Test YQL statements: Based upon the documentation earlier, the YQL
statement to retrieve the list of best sellers can now be written and tested in the
YQL Console. The list is retrieved using a SELECT statement [57] as shown in the
following code:

SELECT * FROM nyt.bestsellers WHERE listname='Hardcover Fiction' AND
apikey='

This statement is similar to the SQL SELECT statement and retrieves records that
meet a selection criterion (specified by the WHERE clause). In this case, the statement
retrieves all the fields of the selected records, specified by the *. As in SQL, selected
fields can be retrieved by naming the fields, separated by commas. The WHERE clause
contains two conditions. The first condition states that the Hardcover Fiction list is
desired. The lists available, as well as the field name (listname), can be found in the
ODT documentation [56]. The final condition specifies the api_key, which authenti-
cates to the web site. The api_key is specified in the blank space between the single
quotes. The output is shown in the console (see code segment Testing Query to

144 CHAPTER 3 Platform as a Service

Retrieve NYT Bestsellers, where only the output is shown for clarity), and includes a
list of books, together with other information, such as the publisher.

<list_name>Hardcover Fiction</list_name>
<display_name>Hardcover Fiction</display_name>
<bestsellers_date>2011-04-23</bestsellers_date>
<published_date>2011-05-06</published_date>
<rank>1</rank>
<rank_last_week>0</rank_last_week>
<weeks_on_list>1</weeks_on_list>
<asterisk>0</asterisk>
<dagger>0</dagger>
<isbns>

<isbn>
<isbn10>0446573108</isbn10>
<isbn13>9780446573018</isbn13>

</isbn>
<isbn>

<isbn10>0446573078</isbn10>
<isbn13>9780446573078</isbn13>

</isbn>
</isbns>
<book_details>

<book_detail>
<title>The Sixth Man</title>
<description>The lawyer for an alleged serial killer is murdered, and
two former Secret Service agents...</description>
<contributor>by David Baldacci</contributor>
<author>David Baldacci</author>
<contributor_note/>
<price>27.99</price>
<age_group/>
<publisher>Grand Central</publisher>
<primary_isbn13>9780446573018</primary_isbn13>

Create Pipe to get bestsellers: A Pipe that retrieves the bestsellers using the
YQL query shown earlier can be generated as follows. First, clicking on the YQL
box in the Sources list brings up a pipe module, as seen in Figure 3.38. The
same YQL query that was executed in the previous step can be typed in to the
module to create a pipe that gets the list of bestsellers from the New York Times.
The output from the pipe needs to be filtered to get the books published by Pustak
Portal. The publisher name is available in the field publisher in the XML docu-
ment (see previous code segment). Filtering can be achieved either by (i) adding
an additional condition to the WHERE clause selecting records where the publisher
is Pustak Portal; or (ii) connecting the output of this module to a Filter module
that does the filtering.

Mashups 145

Create Pipe to generate tweets: Twitter messages are also available through
an ODT that makes the messages appear to be rows in a data table. The APIs and
fields available can be found in the same way as the NYT APIs starting from the
YQL console, and hence is not repeated here. Twitter messages will be generated
via the YQL INSERT statement [58], which, like its SQL counterpart, inserts a row
into a table. However, the YQL INSERT statement can also trigger actions; in the
case of the Twitter ODT it causes generation of a new Twitter message, as shown
in the following code segment.

INSERT INTO twitter.status (message, userid, password) VALUES (“<book>
is on the New York Times bestseller list!”, “userid”, “password”)

Since multiple books from Pustak Portal may be on the bestseller list, it is
necessary to loop over all the books and generate an INSERT for each book as
shown in the code segment. In the statement, userid and password are the Twitter
userid and password and are used for authentication. The message parameter
represents the tweet that will be generated, and the <book> parameter has to be
replaced by the name of the book.

To generate the INSERT statements needed, a Loop Pipe module can be used.
The Loop module is created in the Pipes editor by clicking on the Loop menu item
in the Operators menu (see Figure 3.39). By dragging a String Builder module
inside the Loop module, and filling in the parameters as shown in Figure 3.40, it
is possible to generate the INSERT statements needed as strings. These strings are
then passed to another Loop module that has a YQL module embedded in it. This
Loop module iterates over all the strings, and invokes the YQL module with each
string, resulting in the generation of the needed tweets.

FIGURE 3.38

Pipe for YQL select.

146 CHAPTER 3 Platform as a Service

YQL Update and Delete Statements
In addition to SELECT and INSERT statements, YQL also provides UPDATE and
DELETE statements as well, which update fields of selected records, and delete
records, respectively [58]. The syntax of these statements is shown here:

• UPDATE <ODT> SET field=value WHERE filter
• DELETE FROM <ODT> WHERE filter

FIGURE 3.39

Loop Module.

FIGURE 3.40

Loops to generate tweet.

Mashups 147

The UPDATE statement sets the value of the field attribute to the specified
value in the rows selected by filter from the ODT. The DELETE statement deletes
the selected rows. As with INSERT, the update or delete could trigger an action,
depending upon the ODT being used.

Thus as described in this section, one can see that diverse PaaS solutions are
possible and now available – those that enable existing applications to be hosted on
the cloud (Azure, Google AppEngine), those that require a whole new redesign of
the application (MapReduce) and those that allow even technically inexperienced
end users to create cloud applications (Yahoo! Pipes).

SUMMARY

This chapter described an important cloud model that is very relevant to develo-
pers. As seen, Platform as a Service provides an application development as well
as deployment environment for cloud-hosted applications. Diverse types of PaaS
systems were studied. On one hand, Windows Azure and Google App Engine,
which enable traditional applications (.NET and Java) to directly execute on the
cloud, were detailed and at the other end, Hadoop, which provides a completely
new paradigm for cloud applications, was also described. Just as any traditional
computer application has compute, storage and data resources, PaaS systems
should also provide support for cloud applications for these three key aspects. The
chapter, therefore, also described the PaaS features for enabling cloud storage ser-
vices and special data services that enable applications to manipulate data in a
more structured form – either in XML (pureXML) or relational (SQL Azure).
Each section not only described the developer APIs, but also included some inter-
nal technical architectural details that would enable a developer to better under-
stand the system to develop more efficient applications.

The most important advantage of the Windows Azure platform is the program-
ming model it supports. By making the application the center of operation, instead of
the virtual machine, it provides a higher level of abstraction that is simpler for develo-
pers. The rich tooling and API support offered by Visual Studio, .NET framework
and the Windows platform together make the platform very appealing. The ease of
development and debugging is another attraction. Management is simple, through an
API, and there are a wide range of third-party tools that can be used to manage the
service. Another benefit is the ServiceBus and AccessControl APIs that allow develo-
pers to mix and match cloud applications with on-premise ones, using the same
authentication and authorization mechanisms that they have on-premise. Applications
can be scaled easily, data partitioning is available. However, developers need to tune
their applications to utilize these features. A drawback of Windows Azure is that the
platform is limited to supporting applications that run on the Windows operating sys-
tem. At the time of writing, it wasn’t possible to host applications that run on other
operating systems.

148 CHAPTER 3 Platform as a Service

Though Azure is usually described as a PaaS system, in the Professional
Developers’ Conference 2010, Microsoft announced the public availability of
“VM Role” which essentially provides IaaS-like services on the Windows
Azure environment [59]. The VM role allows users to provision virtual
machines with full administrative privileges. Images can be prepared on-
premise and uploaded to Azure storage for application onto the virtual
machines. Windows Azure makes shadow copies of these images before apply-
ing them to the virtual machines. Changes made by the programs to the operat-
ing system or the disks are maintained in differencing disks – these changes can
be saved or rolled back easily. This is an example of a case where vendors
enhance their core strength in their cloud offering to provide an end-to-end
cloud solution.

Hadoop has become the de facto cloud platform for researchers to work on
their Big Data computing applications. The new programming paradigm intro-
duced by Hadoop – MapReduce – stems from the features of olden day parallel
programming and distributed programming enthusiasts. It is interesting to see
strongly researched technologies come back and be more relevant to present day
computing systems. Use of the MapReduce paradigm requires the user to think
differently about his/her application. Chapter 5 will equip the developer with fun-
damental concepts to help them decompose the application design in MapReduce
format.

Google App Engine, on the other hand, seems to target a developer who is
well-versed in programming for traditional systems and would like to move
onto the cloud. The development system is very similar to traditional develop-
ment (Eclipse IDE), the programming is very similar (Java, Python) and deploy-
ment also very similar (from Eclipse IDE)! Once the developer is able to create
a few cloud applications, the other advanced features of App Engine for data
persistence (datastore), channels, memcache and so on, are available. The
datastore is also very simple and emulates other cloud platforms, with the use
of key-value pairs (NoSQL).

Finally, use of cloud storage from an application can be in multiple forms.
The application developer may want to use only simple and traditional relational
databases to store persistent data across different runs of the application. In this
case, SQL Azure or database offerings from Amazon can be used. Alternatively,
more abstract ways of using a relational system in the form of key-value pairs
can be used with Amazon SimpleDB. On the other side of the spectrum, the
application can use filesystem or block storage (as one would have done in a
non-cloud application using a local file system). In this case Amazon S3 or
EBS can be used. Moving higher up in the application stack and semantics, if
the application wants to use XML-like structured data, services such as
pureXML will be very handy. So, the user can use the most relevant form of
cloud storage applicable to the problem domain being solved by the cloud
application.

Summary 149

References
[1] Windows Azure. http://www.microsoft.com/windowsazure/ [accessed 08.10.11]
[2] The Business of Windows Azure Pricing: What you should know about Windows

Azure Platform Pricing and SLAs.
[3] http://www.microsoft.com/windowsazure/sdk/ [accessed 08.10.11]
[4] http://www.windowsazure4j.org/ [accessed 08.10.11]
[5] http://phpazure.codeplex.com/ [accessed 08.10.11]
[6] http://www.microsoft.com/windowsazure/sdk/ [accessed 08.10.11]
[7] http://code.msdn.microsoft.com/windowsazure [accessed 08.10.11]
[8] https://mocp.microsoftonline.com/site/default.aspx [accessed 08.10.11]
[9] http://www.microsoft.com/windowsazure/learn/tutorials/setup-and-install-tutorial/2-

signup/ [accessed 08.10.11]
[10] Programming Windows Azure: Programming the Microsoft Cloud, Sriram Krishnan,

O’Reilly Media, 24 May 2010.
[11] Inside Windows Azure, Mark Russinovich, Microsoft Professional Developers Confer-

ence 2010, 29 October 2010, http://channel9.msdn.com/Events/PDC/PDC10/CS08
[accessed 08.10.11]

[12] SQL Azure. http://www.microsoft.com/windowsazure/sqlazure/ [accessed 08.10.11]
[13] Windows Azure AppFabric Overview. http://www.microsoft.com/windowsazure/

appfabric/ [accessed 08.10.11]
[14] Channel 9. http://channel9.msdn.com [accessed 08.10.11]
[15] Microsoft’s Professional Developers’ Conference. http://www.microsoftpdc.com/2009

[accessed 08.10.11]
[16] Windows Azure Security Overview, Kaufman and Venkatapathy. http://go.microsoft.

com/?linkid=9740388 [accessed 08.10.11]
[17] Meier JD. Windows Azure Security Notes, http://blogs.msdn.com/cfs-file.ashx/__key/

CommunityServer-Blogs-Components-WeblogFiles/00-00-00-48-03/0572.AzureSecurity-
Notes.pdf [accessed 08.10.11]

[18] Security Best practices for Developing Windows Azure Applications. http://download.
microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-7FEC5F1542D1/Security-
BestPracticesWindowsAzureApps.docx [accessed 08.10.11]

[19] Codeplex. http://www.codeplex.com [accessed 08.10.11]
[20] Developing Advanced Applications with Windows Azure, Steve Marx. http://www.

microsoftpdc.com/2009/SVC16 [accessed 08.10.11]
[21] Moving Applications to the Cloud on the Microsoft Windows Azure Platform. http://

msdn.microsoft.com/en-us/library/ff728592.aspx. [accessed 08.10.11]
[22] Windows Azure platform Articles from the trenches. http://bit.ly/downloadazurebookvol1

[accessed 08.10.11]
[23] Kerner K. Windows Azure Monitoring Logging and Management APIs. http://www.

microsoftpdc.com/2009/SVC15 [accessed 08.10.11].
[24] Collecting Logging Data by Using Windows Azure Diagnostics. http://msdn.micro-

soft.com/en-us/library/gg433048.aspx [accessed 08.10.11]
[25] http://golang.org/doc/go_tutorial.html. [accessed June 2011].
[26] http://code.google.com/appengine/. [accessed June 2011].
[27] Ajax learning guide. http://searchwindevelopment.techtarget.com/tutorial/Ajax-Learning-

Guide. [accessed June 2011].

150 CHAPTER 3 Platform as a Service

http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/sdk/
http://www.windowsazure4j.org/
http://phpazure.codeplex.com/
http://www.microsoft.com/windowsazure/sdk/
http://code.msdn.microsoft.com/windowsazure
https://mocp.microsoftonline.com/site/default.aspx
http://www.microsoft.com/windowsazure/learn/tutorials/setup-and-install-tutorial/2-signup/
http://www.microsoft.com/windowsazure/learn/tutorials/setup-and-install-tutorial/2-signup/
http://channel9.msdn.com/Events/PDC/PDC10/CS08
http://www.microsoft.com/windowsazure/sqlazure/
http://www.microsoft.com/windowsazure/appfabric/
http://www.microsoft.com/windowsazure/appfabric/
http://channel9.msdn.com
http://www.microsoftpdc.com/2009
http://go.microsoft.com/?linkid=9740388
http://go.microsoft.com/?linkid=9740388
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Blogs-Components-WeblogFiles/00-00-00-48-03/0572.AzureSecurityNotes.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Blogs-Components-WeblogFiles/00-00-00-48-03/0572.AzureSecurityNotes.pdf
http://blogs.msdn.com/cfs-file.ashx/__key/CommunityServer-Blogs-Components-WeblogFiles/00-00-00-48-03/0572.AzureSecurityNotes.pdf
http://download.microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-7FEC5F1542D1/SecurityBestPracticesWindowsAzureApps.docx
http://download.microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-7FEC5F1542D1/SecurityBestPracticesWindowsAzureApps.docx
http://download.microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-7FEC5F1542D1/SecurityBestPracticesWindowsAzureApps.docx
http://www.codeplex.com
http://www.microsoftpdc.com/2009/SVC16
http://www.microsoftpdc.com/2009/SVC16
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://bit.ly/downloadazurebookvol1
http://www.microsoftpdc.com/2009/SVC15
http://www.microsoftpdc.com/2009/SVC15
http://msdn.microsoft.com/en-us/library/gg433048.aspx
http://msdn.microsoft.com/en-us/library/gg433048.aspx
http://golang.org/doc/go_tutorial.html
http://code.google.com/appengine/
http://searchwindevelopment.techtarget.com/tutorial/Ajax-Learning-Guide
http://searchwindevelopment.techtarget.com/tutorial/Ajax-Learning-Guide

[28] http://code.google.com/appengine/docs/java/overview.html. [accessed June 2011].
[29] Chen WJ, Chun J, Ngan N, Ranjan R, Sardana MK. ‘DB2 9 pureXML Guide’, in

IBM Redbooks® (http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf); 2007.
[accessed June 2007].

[30] Lennon J. ‘Leveraging pureXML in a Flex Microblogging Application, Part 1: Enabling
Web Services with DB2 pureXML’, IBM developerWorks® article (http://www.ibm.
com/developerworks/xml/library/x-db2mblog1/); 2009. [accessed June 2011].

[31] Lennon J. ‘Leveraging pureXML in a Flex Microblogging Application, Part 2: Building
the Application User interface with Flex’, IBM developerWorks® article (http://www.
ibm.com/developerworks/xml/library/x-db2mblog2/index.html?ca=drs-); 2009.
[accessed June 2011].

[32] Chen, WJ, Sammartino, A, Goutev, D, Hendricks, F, Komi, I, Wei, MP, Ahuja, R, ‘DB2
Express-C: The Developer Handbook For, XML, PHP, C/C++, Java and .NET’, In: IBM
Redbooks® http://www.redbooks.ibm.com/redbooks/pdfs/sg247301.pdf; 2006 [accessed
June 2011].

[33] Nicola, M, Linden, BV, ‘Native XML Support in DB2 Universal Database’, Proceed-
ings of the 31st Annual, VLDB http://www.vldb2005.org/program/paper/thu/p1164-
nicola.pdf; 2005 [accessed June 2011].

[34] Nicola, M, Chatterjee, P DB2 pureXML Cookbook: Master the Power of the IBM
Hybrid Data Server. IBM Press; 2009 [accessed June 2011].

[35] Zhang, G. Introduction to pureXML in DB2 9. http://www.hoadb2ug.org/Docs/
Zhang0812.pdf [accessed June 2011].

[36] Bruni, P, Schenker, M ‘IBM Data Studio’, IBM Redpaper®. http://www.redbooks.ibm
.com/redpapers/pdfs/redp4510.pdf [accessed June 2011].

[37] Eaton, D, Rodrigues, V, Sardana, MK, Schenker, M, Zeidenstein, K, Chong, RF.
Getting Started with IBM Data Studio for DB2. http://download.boulder.ibm.com/
ibmdl/pub/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_Data_
Studio_for_DB2.pdf; 2010 [accessed June 2011].

[38] Chong, R, Hakes, I, Ahuja, R. Getting Started with DB2-Express. http://public
.dhe.ibm.com/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_
DB2_Express_v9.7.pdf; 2009 [accessed June 2011].

[39] WebSphere Application Server Community Edition, IBM. http://www-01.ibm.com/
software/webservers/appserv/community/ [accessed 14.10.11].

[40] Free: IBM DB2 Express-C. http://www.ibm.com/developerworks/downloads/im/
udbexp/cloud.html. IBM [accessed 14.10.11].

[41] Ghemawat, S, Gobioff, H, Leung, S-T. The Google file system.SOSP’03. Proceedings
of the nineteenth ACM symposium on Operating Principles, New York: 2003.
[accessed June 2011].

[42] Dean, J, Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters.
OSDI ’04: 6th Symposium on Operating Systems Design and Implementation USE-
NIX Association. http://www.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf;
2004 [accessed June 2011].

[43] Chang, F, Dean, J, Ghemawat, S, et al., 2008. Bigtable: A distributed storage system for
structured data. ACM Trans Comput Syst (TOCS) 2008;26 (2) [accessed June 2011].

[44] http://hadoop.apache.org/common/docs/r0.19.2/capacity_scheduler.html [accessed June
2011].

[45] Using HDFS Programmatically. http://developer.yahoo.com/hadoop/tutorial/module2.
html#programmatically [accessed June 2011].

References 151

http://code.google.com/appengine/docs/java/overview.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf
http://www.ibm.com/developerworks/xml/library/x-db2mblog1/
http://www.ibm.com/developerworks/xml/library/x-db2mblog1/
http://www.ibm.com/developerworks/xml/library/x-db2mblog2/index.html?ca=drs-
http://www.ibm.com/developerworks/xml/library/x-db2mblog2/index.html?ca=drs-
http://http://www.redbooks.ibm.com/redbooks/pdfs/sg247301.pdf
http://http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf
http://http://www.vldb2005.org/program/paper/thu/p1164-nicola.pdf
http://http://www.hoadb2ug.org/Docs/Zhang0812.pdf
http://http://www.hoadb2ug.org/Docs/Zhang0812.pdf
http://http://www.redbooks.ibm.com/redpapers/pdfs/redp4510.pdf
http://http://www.redbooks.ibm.com/redpapers/pdfs/redp4510.pdf
http://http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_Data_Studio_for_DB2.pdf
http://http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_Data_Studio_for_DB2.pdf
http://http://download.boulder.ibm.com/ibmdl/pub/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_Data_Studio_for_DB2.pdf
http://http://public.dhe.ibm.com/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_DB2_Express_v9.7.pdf
http://http://public.dhe.ibm.com/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_DB2_Express_v9.7.pdf
http://http://public.dhe.ibm.com/software/data/sw-library/db2/express-c/wiki/Getting_Started_with_DB2_Express_v9.7.pdf
http://www-01.ibm.com/software/webservers/appserv/community/
http://www-01.ibm.com/software/webservers/appserv/community/
http://www.ibm.com/developerworks/downloads/im/udbexp/cloud.html
http://www.ibm.com/developerworks/downloads/im/udbexp/cloud.html
http://www.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf
http://hadoop.apache.org/common/docs/r0.19.2/capacity_scheduler.html
http://developer.yahoo.com/hadoop/tutorial/module2.html#programmatically
http://developer.yahoo.com/hadoop/tutorial/module2.html#programmatically

[46] Enals R, Brower E, et al., Intel Mash Maker : Join the Web, Intel Research, 2007
[accessed June 2011].

[47] Module Reference: Source Modules. http://pipes.yahoo.com/pipes/docs?doc=sources
[accessed June 2011].

[48] Module Reference: User Input Modules. http://pipes.yahoo.com/pipes/docs?doc=user_
inputs [accessed June 2011].

[49] Module Reference: Operator Modules. http://pipes.yahoo.com/pipes/docs?doc=operators
[accessed June 2011].

[50] Module Reference: URL Modules. http://pipes.yahoo.com/pipes/docs?doc=url
[accessed June 2011].

[51] Module Reference: String Modules. http://pipes.yahoo.com/pipes/docs?doc=string
[accessed June 2011].

[52] Module Reference: Date Modules. http://pipes.yahoo.com/pipes/docs?doc=date
[accessed June 2011].

[53] Module Reference: Data Types. http://pipes.yahoo.com/pipes/docs?doc=location
[accessed June 2011].

[54] Module Reference: Number Modules. http://pipes.yahoo.com/pipes/docs?doc=number
[accessed June 2011].

[55] http://developer.yahoo.com/yql/console [accessed June 2011].
[56] The Best Sellers API. http://developer.nytimes.com/docs/best_sellers_api [accessed

June 2011].
[57] YQLSelect. http://developer.yahoo.com/yql/guide/select_syntax.html [accessed June

2011].
[58] Syntax of I/U/D. http://developer.yahoo.com/yql/guide/iud-syntax.html [accessed June

2011].
[59] Migrating and Building Apps for Windows Azure with VM Role and Admin Mode,

Mohit Srivastava. http://channel9.msdn.com/events/PDC/PDC10/CS09; October 2010.
[accessed June 2011].

152 CHAPTER 3 Platform as a Service

http://pipes.yahoo.com/pipes/docs?doc=sources
http://pipes.yahoo.com/pipes/docs?doc=user_inputs
http://pipes.yahoo.com/pipes/docs?doc=user_inputs
http://pipes.yahoo.com/pipes/docs?doc=operators
http://pipes.yahoo.com/pipes/docs?doc=url
http://pipes.yahoo.com/pipes/docs?doc=string
http://pipes.yahoo.com/pipes/docs?doc=date
http://pipes.yahoo.com/pipes/docs?doc=location
http://pipes.yahoo.com/pipes/docs?doc=number
http://developer.yahoo.com/yql/console
http://developer.nytimes.com/docs/best_sellers_api
http://developer.yahoo.com/yql/guide/select_syntax.html
http://developer.yahoo.com/yql/guide/iud-syntax.html
http://channel9.msdn.com/events/PDC/PDC10/CS09

CHAPTER

4Software as a Service

INFORMATION IN THIS CHAPTER:

• CRM as a Service, Salesforce.com

• Social Computing Services

• Document Services: Google Docs

INTRODUCTION

The previous two chapters have studied how computing resources can be delivered
as a service through the model of Infrastructure as a Service (IaaS), as well as how
application deployment platforms can be delivered as a service through the model
of Platform as a Service (PaaS). Clearly, these are generic services that can be used
by developers for creating new applications which can themselves be accessed as a
service and that is the topic of this chapter. These cloud services which deliver
application software as a service fall into the category of Application as a Service,
more commonly known as Software as a Service (SaaS).

There are many advantages of delivering an application as a service. First of all,
users can directly use these applications without any new software installations
on their local machines, as these applications will now execute within a web brow-
ser (YouTube, for example). The required software will be available on multiple
platforms and can be used from any of the user’s devices (say, home PC, office PC,
mobile device). If the application is needed only for a short period of time, the user
can simply pay per use (say a home modeling software is used only when someone
is renovating/buying a house). Further, these applications can be customized for dif-
ferent users both in terms of user interface and selected features, so there is no loss
in flexibility. From the application vendor’s point of view, there are many advan-
tages as well. Many service providers find it economically viable to offer a new
application as a service instead of creating packages and distribution channels.
More importantly, it helps to ensure that the software is not pirated. With SaaS, the
application vendor need not worry about distributing updates of newer versions of
the application; only the cloud application needs to be changed and the new version
will now be used the next time the consumer accesses it. By ensuring that the latest
version of the software is always used, the SaaS model lowers support costs. The
application vendor also gets better insight into the needs of the customers by

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00004-4
© 2012 Elsevier, Inc. All rights reserved.

153

http://dx.doi.org/10.1016/B978-1-59749-725-1.00004-4

analyzing the usage data collected at a central location. Due to these reasons and
more, the SaaS model will make the adoption of Cloud Computing much wider.

This chapter studies some examples of popular SaaS applications that not only
provide service-enabled solutions but also provide a platform where developers
can rapidly create and customize newer applications in the same domain. The first
section describes Salesforce.com, one of the very well-known SaaS cloud applica-
tions that delivers a CRM service. This is followed by a description of social
computing services and then Google Docs, which are important consumer applica-
tions. Each section discusses both the straightforward use of the application as
well as the use of the platform APIs to extend the functionality. Each section also
contains a brief overview of the underlying technology and how it can be applied
to Pustak Portal, the running example of the book.

CRM AS A SERVICE, SALESFORCE.COM
Salesforce.com [1] is a well-known Customer Relationship Management (CRM)
application used for financial, delivery and staffing related to business systems
operations. A CRM application consists of a set of workflows (business processes)
together with software that helps to manage customer-related activities and informa-
tion. These activities could be related to sales (such as using customer information to
generate future leads), marketing tasks (like using historical sales data to develop
sales strategies) or to provide better customer service (by using call center data).
Salesforce.com provides a comprehensive list of features for all of these three types
of activities. This section, however, focuses on the features of Salesforce.com for
customer support representatives as a case study of SaaS usage.

A Feature Walk Through
Before a business can start using Salesforce.com, there is a small setup phase where
the business user can customize Salesforce.com for their business requirements. This
involves first obtaining a Salesforce.com account. Second, the system administrator
belonging to the business has to import their existing customer data into Salesforce.
com, customize the various Salesforce.com screens, and give access rights for the
appropriate screens to the employees of the business. The description following does
not go into the details of this setup, and assumes that the required configuration has
already been set up.

After the Salesforce.com portal has been set up, customer support representatives
can log in and go to the Call Center web page, shown in Figure 4.1. This contains
functionality for handling customer requests, such as recording customer calls, assign-
ing the cases to support personnel, and searching for solutions. The web page
contains a number of tabs. Figure 4.1 shows the Cases tab, which helps support
representatives to keep track of, and handle, customer complaints. It can be seen that
the web page allows one to search for a particular case, look at recent cases, and

154 CHAPTER 4 Software as a Service

http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com

generate useful reports such as the total number of cases. The tool Mass Email allows
one to send an email to the email id associated with each case. The default fields for
a case can be seen by clicking on the Create New bar to the left of the web page. This
brings up the screen shown in Figure 4.2, which can be used by support (call center)
personnel who are generating a new case from a phone call. The Contact Name and
Account Name fields can be found by searching the Contacts and Accounts database.
Many of the fields, example, Priority, and Case Origin, are values selected from a

FIGURE 4.1

Salesforce.com.

FIGURE 4.2

Salesforce.com: New Case screen.

CRM as a Service, Salesforce.com 155

http://Salesforce.com
http://Salesforce.com

pull-down menu. In Salesforce.com, this is referred to as a picklist. Additional fields
can be added to the case record by the administrator, thus customizing this page to
the needs of each enterprise.

NOTE
To test the functionality presented here, readers can visit www.salesforce.com and sign up
for a free account.

The other tabs on the page contain some interesting functionality useful for
employees handling customer calls. For example, the Solutions tab provides
access to a database containing earlier solutions to customer problems. This data-
base is searchable, allowing employees to quickly resolve customer problems. The
full list of tabs can be found by clicking on the “+” sign. The administrator can
customize the tabs visible on each screen. The Sales and Marketing web pages
contain functions useful for sales and marketing, respectively, and are similar to
the Call Center page. Furthermore, the Community and Salesforce Chatter web
pages allow for instant messaging, forums, and other types of collaboration
between users. It can be seen that the application interface is designed to suit a
typical business need and hence can be customized to reuse as an application for
a new business.

The Add App Exchange App tab (Figure 4.5) enables users to extend the functional-
ity of Salesforce.com by installing applications from the Salesforce.com. AppEx-
change portal and the Create New App tab allows users to create new applications
(over Salesforce.com) and offer them for free download or purchase through
AppExchange. Access to these tabs can be controlled by the administrator for the
enterprise. Advanced features of the platform can be accessed using the Force.com
link, a complete featured platform on which Salesforce.com executed that is described
in the next section.

Once a new case has been created, it is possible to click on the case id to get the
details of the case. The page also contains a button to create an activity associated
with the case, which could be a task or an event (such as a meeting to discuss the
case). Figure 4.3 shows the screen for creating a new task. This screen contains
fields for assigning a task to another agent, setting a deadline, and so on.

It is not always necessary to manually enter cases. Salesforce.com has features
to automatically create cases from the Web as well as custom emails. For creating
cases automatically from a self-service web page, the administrator can create a
web script using the Salesforce.com application that can be included in the web
site belonging to the business. Salesforce.com has other advanced features for
assisting customer support representatives. For example, cases can also be automa-
tically generated by extracting fields from customer emails. There are also features
to support soft phones, case teams consisting of employees with different roles,
and creating case hierarchies. Details of these advanced features are beyond the
scope of this book, but can be found under the link Cases in the Help page [2].

156 CHAPTER 4 Software as a Service

http://Salesforce.com
http://www.salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com

Customizing Salesforce.com
In the earlier paragraphs, the standard features and web pages in Salesforce.com
were described. However, businesses will want to customize Salesforce.com
to suit their business processes. This is a very important aspect of supporting
multi-tenancy in a SaaS application. A brief overview of some important custo-
mizations and details are presented next.

NOTE
Customizing the application
• Change field names
• Set conditions for field updates
• Set conditions for email alerts
• Customize UI

As stated earlier, Salesforce.com allows renaming fields of all Salesforce.com
database objects as well as addition of custom fields. For example, businesses
can add fields to the case record shown in Figure 4.2 to keep track of data
unique to the business. Fields like the Product field, which are selected via a
picklist, can be set to product codes for the business. Workflows (business pro-
cesses) are captured in Salesforce.com by means of a series of rules. For exam-
ple, assignment rules shown in Figure 4.2 can be used to automatically assign
cases to support representatives. By updating assignment rules, customer case
workflow can be tailored to business needs. Apart from task rules, other types of
rules that can be implemented are (i) email alerts, which send an email alert
under certain condition, (e.g., confirmation of a sale), (ii) field updates (e.g.,
when a contract is about to expire) (iii) outbound messages that interface to an

FIGURE 4.3

Salesforce.com new task screen.

CRM as a Service, Salesforce.com 157

http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Salesforce.com

external system (e.g., send a message to a finance system when an invoice is
approved). Details can be found on the portal describing the creation of Workflow
Rules web site [3].

Finally, both administrators and users can customize the look and feel of the
user interface. This includes items such as the placement and content of text and
graphics, names and numbers of tabs on each screen, and the overall layout of the
screen. Administrators can set an overall look and feel for the business, and give
employees rights to personalize their individual views. More details of this aspect
can be found under the link Customize on the Help page [2].

Another SaaS application whose functionality is similar to Salesforce.com is
Sugar CRM [4], which is an Open Source CRM suite. A comparison of Sugar
CRM and Salesforce.com by the Salesforce.com team is in [5].

Force.com: A Platform for CRM as a Service
Salesforce.com is built on a software platform called Force.com. When customers
use Salesforce.com, they are really using a sophisticated application built on the
Force.com platform, where the application stores its data and execution logic in
Force.com (for example, the data used for different Case records). Users of Force.
com can build their own applications, which are either standalone or integrated
with Salesforce.com. In fact as described later in this section, the reader can see
that Force.com has several features studied in Chapter 3 and can, in fact, be con-
sidered as a PaaS solution on its own. This section reviews the architecture and
high-level components of Force.com, to show to the reader the complexity of
developing a really configurable SaaS application.

Architecture Overview
Figure 4.4 shows the architecture of Force.com which is detailed in this subsection.
The lowest layer is the Force.com database, which stores the CRM data for users, as
well as the associated metadata (such as user privileges). It is a distributed, reliable
database that is shared among all the users of Force.com. In order to ensure privacy
of data for each user and give an effect of each having their own database, the data
from different users are securely isolated from one another. Further, the administra-
tion and maintenance of the database is automated and controlled by Force.com
administrator, thus reducing the IT management overhead on the users. The next
layer above the database is the Integration layer. This supports SOAP (Simple
Object Access Protocol) based Web Services API [6] for accessing the database, and
hence can be used by any development environment that interfaces to SOAP, such as
Java and .Net. The Web Services API has also been used to develop connectors that
connect to other cloud services such as Amazon, as well as other enterprise software
such as SAP and Oracle.

Above the Integration layer is the Logic layer, which contains workflow and
business logic. This contains the workflow logic for Salesforce.com and also
allows customers to extend the functionality of Salesforce.com or write their own

158 CHAPTER 4 Software as a Service

http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Salesforce.com
http://Salesforce.com

cloud applications. Like the database, it is built on a scalable platform. This is
transparent and virtualized to the platform user, i.e., the user will not be aware of
the number of processors being used to execute the workload or even the type of
processors being used. The workflow engine contains common scheduling func-
tionality such as timed events and tasks. More sophisticated logic can be built
using the Apex programming language [7].

The User Interface (UI) layer sits above the Logic layer. There are two com-
ponents that can be used to create the UI. The Builder component provides a sim-
ple drag-and-drop interface which allows simple manipulations of the default UI,
such as changing the layout of the default display. The Visualforce framework
allows building of a custom UI and is described in more detail later in this sec-
tion. The AppExchange layer (web page) allows customers of Salesforce.com to
install third-party applications that integrate with and extend the functionality of
Salesforce.com (see Figure 4.5).

Additionally, Force.com offers a set of developer tools to enable testing and
debugging of programs. Programs can be run in isolation and debugged inside a
runtime environment called Sandbox. The Sandbox also provides a full-fledged
test environment and even allows copying of data from a customer’s production
data to the Sandbox for testing purposes. This is similar to the sandbox provided
by Google App Engine described in Chapter 2. The IDE (Integrated Development
Environment) is based on Eclipse, and contains tools such as a schema browser,
Apex code editor and tools to organize code and build the final program. The
Developer tools also contain Code Share, a source code management system that

Builder Visual force

Logic: Workflow, Business Logic, Apex

Integration

Web services API
Connectors

(e.g., Google, SAP)

Database

User interface

AppExchange

Developer tools

Metadata API

IDE Code share

Sandbox

FIGURE 4.4

Key components of Force.com architecture.

CRM as a Service, Salesforce.com 159

http://Salesforce.com
http://Salesforce.com
http://Force.com
http://Force.com

allows more than one programmer to jointly work on code. The developer tools
also include the Metadata API, which allows developers to manipulate metadata,
such as the structure of objects. This is useful, for example, for enhancing the
application to use additional data fields without requiring major edits to the
application. Some of the above key modules of Force.com are described next.

Force.com Database
As stated earlier, the Force.com database stores CRM data, together with metadata,
such as user rights and privileges. It is not a relational database. It is a database that
stores records, with each record corresponding to an object. For example, any new
cases created would be stored as records. Similarly, each task, account or other
object in the system would have a corresponding record in the Force.com database.

NOTE
Force.com database
• Record-oriented, not relational
• Each record corresponds to a Force.com object
• Each record has a unique ID
• Relationships to other records are represented by relationship fields: Master-Detail,

Parent-Child
• Data types include Number and Text, as well as specialized types such as Picklist,

Email, Phone, and Checkbox.

Each record can have three types of fields:

1. Identity, or ID field: created for every record when it is first generated. The
ID field uniquely identifies the record and is 15 characters long.

2. The data fields: contain each field corresponding to an attribute of the object.
There are a large number of data types as described subsequently.

3. The Relationship field captures the relationship across objects. For example,
each Case can have a Contact associated with it. So, the record for a case
would contain the ID field for the Contact. This type of relationship is called
a Lookup relationship. A relationship called Master-Detail relationship
captures the parent-child relation, where deletion of the parent record removes
all the child records. This is somewhat similar to Delphi database concepts [8].

Additionally, there are System fields such as the creation date and modifica-
tion time, and Help fields that can store help associated with the record. More
detailed information about the architecture is available in the Force.com White
Paper [9].

The Force.com database supports a large number of data types. In addition to
common types such as Number and Text, there are also some special data types to
help simplify programming. These include: Picklist and Multi-Select Picklists,
which allow the selection of one value from a list of values (such as the Product
field). The Checkbox data type represents Boolean values. There are also values for

160 CHAPTER 4 Software as a Service

http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com

Email, Phone, and URL. A full list is available in A Comprehensive Look at the
World’s Premier Cloud-Computing Platform [9].

Programming on Salesforce.com and Force.com
This section describes how to develop some simple programs on the Salesforce.com
platform. It starts with a simple program to load existing data in bulk into the Force.
com database. Bulk loading of data is where multiple records, such as customer
records, are batched together, and loaded together into Force.com. Clearly, bulk
loading can be more efficient than individual loads, as each load operation incurs a
network overhead.

A Force.com Example: Bulk Load of Data
To allow users to quickly get started, a simple Java program is used to bulk load data
into Salesforce.com. This program can also be used to upload test data that is used to
test and run the hosted programs later. Since the program is slightly complicated, it
will be explained method by method.

FIGURE 4.5

Salesforce.com AppExchange.

CRM as a Service, Salesforce.com 161

http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Salesforce.com
http://Salesforce.com

NOTE
This example shows
• Use of Force.com Web Services Connector
• Bulk insert, delete or update of data into Force.com database
• Use of Web Services API
• Background tasks

First, the code imports the Java classes and the Salesforce.com classes needed.
The required jar files are available in the Force.com Web Services Connector
(WSC) kit downloadable from http://code.google.com/p/sfdc-wsc/downloads/list.
Executing the command “ant all” generates the jar files [10].

Import com.sforce.async.AsyncApiException;
import com.sforce.async.BatchInfo;
import com.sforce.async.BatchStateEnum;
import com.sforce.async.CSVReader;
import com.sforce.async.ContentType;
import com.sforce.async.JobInfo;
import com.sforce.async.JobStateEnum;
import com.sforce.async.OperationEnum;
import com.sforce.async.RestConnection;
import com.sforce.soap.partner.PartnerConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

package com.hindustan.crm;

import java.io.*;
import java.util.*;

The following code shows the Java source code for the bulk load example that
was described above. The implementation of the methods called in BulkLoad
method are detailed.

public class BulkLoad {
private static final String apiVersion = "19.0";
private static final String authEndpoint = "https://login.salesforce.

com/services/Soap/u/" + apiVersion;
private RestConnection restConnection = null;

public static void main(String[] args) throws ConnectionException,
AsyncApiException, IOException {

if (args.length != 3) {
System.out.println("User ID, Password and/or Security Token are
not provided.");
return;

}
String userId = args[0];
String pw = args[1];
String securityToken = args[2];

162 CHAPTER 4 Software as a Service

http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com
http://code.google.com/p/sfdc-wsc/downloads/list

BulkLoad bl = new BulkLoad();
ConnectorConfig soapConnectorConfig = bl.establishSoapSession

(userId, pw, securityToken);
bl.getRestConnection(soapConnectorConfig.getSessionId(),

soapConnectorConfig.getServiceEndpoint());
JobInfo jobInfo = bl.createInsertJob("Account");
BatchInfo batchInfo = bl.addBatch2Job(jobInfo, "myAccounts.csv");
bl.closeJob(jobInfo.getId());
bl.waitTillJobIsComplete(jobInfo);
bl.checkStatus(jobInfo, batchInfo);

}

The program logs in to Force.com using the establishSoapSession call with the
user id and password from the command line. The next line creates a REST connec-
tion to the server using getRestConnection. The createInsertJob method creates a
jobInfo object which specifies that Account records are to be inserted into the Force.
com database. As this example is about uploading data, a jobinfo object that
specifies an insert job has been created. The jobInfo object can also specify bulk
update, and delete of records. The records to be loaded (or updated and deleted) are
recommended to be loaded in batches of 1,000 to 10,000 records. A job can also be
performed in multiple batches. The addBatch2Job call specifies the import of a batch
of records by specifying the source (in this case, a comma separated variable (CSV)
file), and submits the job for processing as a batch (background) task. The job
(sequence of batches) is then closed by closeJob. In the subsequent lines, the pro-
gram waits for the job to complete and prints out the number of objects inserted.

The next few code snippets show the implementation of the other methods
called in BulkLoad method.

private ConnectorConfig establishSoapSession(String userId, String pw,
String securityToken) throws
ConnectionException {

ConnectorConfig soapConnectorConfig = new ConnectorConfig();
soapConnectorConfig.setUsername(userId);
soapConnectorConfig.setPassword(pw + securityToken);
soapConnectorConfig.setAuthEndpoint(authEndpoint);
new PartnerConnection(soapConnectorConfig);
return soapConnectorConfig;

}

private void getRestConnection(String sessionId, String soapEndPoint)
throws AsyncApiException {

int soapIndex = soapEndPoint.indexOf("Soap/");
String restEndPoint = soapEndPoint.substring(0, soapIndex) + "async/" +
apiVersion;
ConnectorConfig cc = new ConnectorConfig();
cc.setSessionId(sessionId);
cc.setRestEndpoint(restEndPoint);
restConnection = new RestConnection(cc);

}

CRM as a Service, Salesforce.com 163

http://Force.com
http://Force.com
http://Force.com

Consider the code fragment that shows the implementation of the
establishSoapSession method. This returns a new ConnectorConfig object,
after setting the userid and password. From the code that implements the
getRestConnection method, it can be seen that the method returns a newly cre-
ated RestConnection from the SOAP session id and service endpoint obtained
from the SOAP session created by establishSoapSession [11, 12].

The createInsertJob method returns a new asynchronous (background) job.
The setObject method specifies that Account objects are to be inserted; the
setOperation method specifies that the operation being done is insertion (or
import) of data. The complete code for these two methods is shown next.
addBatch2Job uses the createBatchFromStream method to import a batch of
records from the file passed in as input.

private JobInfo createInsertJob(String sobjectType) throws
AsyncApiException {

JobInfo jobInfo = new JobInfo();
jobInfo.setObject(sobjectType);
jobInfo.setOperation(OperationEnum.insert);
jobInfo.setContentType(ContentType.CSV);
jobInfo = restConnection.createJob(jobInfo);
System.out.println(jobInfo);
return jobInfo;

}

private BatchInfo addBatch2Job(JobInfo jobInfo, String filename) throws
IOException, AsyncApiException {

FileInputStream fis = new FileInputStream(filename);
try {

BatchInfo batchInfo = restConnection.createBatchFromStream
(jobInfo, fis);
System.out.println(batchInfo);
return batchInfo;

} finally {
fis.close();

}
}

waitTillJobIsComplete gets the state of the job by using the getState method,
and exits if the job is done. The following checkStatus method computes the
number of objects that have been inserted (to detect if any errors occurred) and also
displays relevant information on screen.

private void closeJob(String jobId) throws AsyncApiException {
JobInfo job = new JobInfo();
job.setId(jobId);
job.setState(JobStateEnum.Closed); // Here is the close
restConnection.updateJob(job);

}

164 CHAPTER 4 Software as a Service

private void waitTillJobIsComplete(JobInfo jobInfo) throws
AsyncApiException {

long waitTime = 0L; // first time wait time is 0
boolean jobDone = false;
BatchInfo batchInfo = null;
do {

try {
Thread.sleep(waitTime);
} catch (InterruptedException e) {
}
BatchInfo[] biList = restConnection.getBatchInfoList(jobInfo.
getId()).getBatchInfo();
batchInfo = biList[0];
BatchStateEnum bse = batchInfo.getState();
jobDone = (bse == BatchStateEnum.Completed || bse ==
BatchStateEnum.Failed);
waitTime = 10 * 1000; // next time onwards wait time is 10 seconds

} while (!jobDone);
}

Private void checkStatus(JobInfo job, BatchInfo batchInfo) throws
AsyncApiException, IOException {

CSVReader cvsReader = new CSVReader(restConnection.
getBatchResultStream(job.getId(), batchInfo.getId()));
List<String> headerLine = cvsReader.nextRecord();
int colCount = headerLine.size();
List<String> row;
while ((row = cvsReader.nextRecord()) != null) {

Map<String, String> result = new HashMap<String, String>();
for (int i = 0; i < colCount; i++) {

result.put(headerLine.get(i), row.get(i));
}
Boolean success = Boolean.valueOf(result.get("Success"));
Boolean created = Boolean.valueOf(result.get("Created"));
String id = result.get("Id");
String error = result.get("Error");
if (success) {

if (created) {
System.out.println("Created row with id " + id);

} else {
System.out.println("Problem in creating row with row " + id);

}
} else {

System.out.println("Failed with error: " + error);
}

}
}

CRM as a Service, Salesforce.com 165

A sample input for the bulk data is shown in the following:

Account Number, Name, Contact
1. Acme Corporation, 1022238676868ab
2. XYZ Enterprises, aaabx1234fygher

The first line shows that each line in the file contains the Account Number, the
Name and the Contact. While the Account Number and Name are human-understandable
fields, the Contact field is not. The Contact field is really a reference or pointer to
an already existing Contact record (if the contact data has not yet been loaded, it
should be left empty). As stated earlier, each record in the Force.com database has
a 15 character ID, and the Contact field in the Account object should contain the
ID of the Contact record for the account.

This implies that generating the test data set is really a two-step (or multi-step)
process. First, it is necessary to extract a list of Contacts and their IDs from the
Force.com database. Then, the appropriate Contact IDs have to be inserted into
the file to be used as input for the Account import program. Any other IDs in the
Account object have also to be similarly inserted.

Bulk data loading of data in Force.com is more efficient than loading records
individually. However, there are possible side effects as well, such as increased
lock contention. There is a set of valuable performance tips present in docu-
mentation from Salesforce.com [13, 14, 15]. Some examples are (i) to use the
retrieve() call, using HTTP/1.1 connections to allow for long-lasting sessions
(ii) using compression in SOAP messages (iii) suspending triggers if possible on
bulk load (to improve speed of load) (iv) ensuring that the data being loaded
does not have lock conflicts with other transactions and (v) partitioning data for
speed of processing.

Force.com – A More Complex Example
The following is a more complex example of programming Force.com that
involves the use of alerts. Consider the running example of Pustak Portal, the
hypothetical document portal owned by a publishing house. The publishing
house keeps track of the inventory of each book that is in print. When a book-
store needs to order a book, it can enter a request for the book at the Pustak
portal. If sufficient copies of the book exist, the portal satisfies the request.
Otherwise if satisfying the request implies that the number of books would fall
below a threshold, it triggers a workflow to print more copies of the book (sub-
ject to approval) and sends an email to the appropriate person in the publishing
house.

The UI for this application is developed using the Force.com Builder UI.
Figure 4.6 shows the Accounts tab in Pustak Portal. Since Pustak Portal is a pub-
lisher, the various bookstores are their customers. Therefore, the bookstores have
been defined as Accounts in the Pustak Portal.

166 CHAPTER 4 Software as a Service

http://Force.com
http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com
http://Force.com

The list of books published by Pustak Portal is shown in Figure 4.7. Books
have been defined as a new type of object in the Force.com database, which have
Inventory and ISBN as attributes. By default, the Force.com Builder UI creates a
tab for each object; this tab has been renamed to “Published Books”.

FIGURE 4.6

Accounts tab of Pustak Portal.

FIGURE 4.7

Force.com tab showing published books.

CRM as a Service, Salesforce.com 167

http://Force.com
http://Force.com
http://Force.com

To implement a special workflow when the inventory of books falls below a
threshold, one can implement a trigger, which executes automatically upon
certain conditions (database operations such as insert, delete). The trigger is imple-
mented in the Apex programming language. Apex is modeled after Java, but
encapsulates many features of the Force.com platform [16]. For example, Force.
com events are exposed in Apex; also, if there are conflicts due to concurrent
updates, these are resolved by Apex runtime. For a list of more differences, see
the wiki.

The trigger is defined using the Force.com IDE, shown in Figure 4.8. The IDE
is a plug-in to Eclipse, and is downloaded from Force.com [17]. The trigger is
defined as a class in the package “Triggers”.

The same code shown in Figure 4.8 has been extracted here,

Trigger booksInventoryTrigger on Book__c (before insert) {
for (Book__c book : trigger.new) {

Id id = book.Published_Book__c;
PublishedBook__c pbook = [Select Inventory__c from
PublishedBook__c where id=:id][0];
if (pbook.Inventory__c < book.In_Store_Inventory__c) {

book.In_Store_Inventory__c.addError('Not
enough prints available.');

} else {

FIGURE 4.8

Force.com development environment showing triggers for Pustak Portal.

168 CHAPTER 4 Software as a Service

http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com
http://Force.com

pbook.Inventory__c = pbook.Inventory__c –book.
In_Store_Inventory__c;
update pbook;

}
}

}

The first statement defines the trigger booksInventoryTriggerwhich is
invoked when a database operation is performed on a record of type Book__c
(which represents a book). The phrase before insert indicates that the trigger is
a before trigger that executes before the database operation. The other kind of
trigger is an after trigger. The phrase also indicates that the database operation is
an insert. More detailed description of triggers and other Apex features can be
found in a White Paper from Salesforce.com [18].

The second line iterates over all records being inserted, with book being the
loop variable. This kind of for loop is called a set iteration loop. The next line
finds the id (ISBN) of the book being ordered by the bookstore. The next
line is a Salesforce Object Query Language (SOQL) query. The query finds the
Inventory for the book by looking at the PublishedBook__c objects and com-
paring the requested book’s ISBN to the ISBN of the object (id=:id), where
the ‘:’ before the id indicates that we are referencing the variable. Since the
result is always a set of objects, we take the first member, as indicated by the
[0]. For more details on SOQL, see [19]. The if statement that follows checks
if the request would make the inventory less than the threshold, and signals an
error if true.

By associating the trigger with database inserts, it would be possible to have it
execute during every invocation. However, to demonstrate the capabilities of
Force.com, we define a trigger through the Force.com Builder UI.

Figure 4.9 shows how a workflow can be defined from the Salesforce UI. The
Object field indicates that this is a rule that applies when an object of type Published
Book is modified. The Rule Criteria field indicates that the criterion for firing the
rule is that the Inventory is less than 5. The workflow action is that an email alert
should be sent.

Finally, the screen for setting up an email alert is shown in Figure 4.10. It names
the alert “Low on prints” (which was invoked by the workflow in Figure 4.10 and
sends a message that the inventory of a particular book is low). Note that the email
message allows use of Force.com variables.

This section took a detailed look at one of the well-known SaaS solutions for
CRM applications. It was observed that Salesforce.com is not just a web portal
that hosts a CRM application so that a small business can use it for their daily
business activity, but also includes a platform and a set of developer APIs that
can be used to build more sophisticated applications with a CRM module hosted
on Force.com. This is typical about any SaaS application that needs to be largely
customized for different users. In the process of making the features customizable,

CRM as a Service, Salesforce.com 169

http://Salesforce.com
http://Force.com
http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com

FIGURE 4.9

Introducing a workflow trigger.

FIGURE 4.10

Configuring an email alert.

170 CHAPTER 4 Software as a Service

the underlying application architecture evolves to become a platform and starts look-
ing like a PaaS solution, blurring the boundary between a configurable SaaS versus a
simplistic PaaS, especially when the platform is also exposed to developers for
enhanced applications. However, all SaaS solutions may not follow this route
especially when the application itself can be used by multiple users without much
customization – as will be seen in Google Docs. In the next section, another class
of customizable SaaS applications that have evolved around the Web 2.0 style of
computing are explored.

SOCIAL COMPUTING SERVICES1

Social computing has transformed the Web from being an industrial and technolo-
gical infrastructure to something resembling a digital universe that is a replica of
the physical universe. In retrospect, the World Wide Web was always intended as
“a collaborative medium, a place where users [could] all meet and read and write”
[20]. However, around 2006, there was a distinguishable trend when the amount
of User Generated Content (UGC) started to explode across the Web. Further,
cloud-based services like Facebook and Wikipedia provided a platform for users
to create their own web-presence and content [21, 22]. These web sites go beyond
just providing an infrastructure in the cloud but also leverage the content created
by users in order to add value to others through collective intelligence. Hence,
social computing on the Web introduces a revolutionary and unique set of chal-
lenges and opportunities.

The aim of the section on social computing has been twofold: (a) To introduce
social computing as a paradigm: what it means, the underlying concepts and some
of the recent trends; (b) To familiarize a developer with the social APIs that are
available from some of the popular web sites which can be useful for writing
social applications. Three popular social computing services are explored as case
studies, namely Facebook (a social network), Picasa (a social media web site) and
Twitter (a micro-blogging web site). Diverse programming languages and usage
patterns will be used to exemplify the different APIs for the three web sites.
Finally, an overview of Open Social API is given, which is an attempt to create a
single API interface that programmers can use to interface this application with
multiple social web sites and discuss the privacy implications of social
networking.

What Constitutes “Social” Computing?
The term “social computing” is used to refer to a broad spectrum of cloud-based
services which encourage and exploit the active participation of users and the con-
tent they create. Examples of web services that may qualify as “social computing”

1Contributed by Mr. Praphul Chandra, Hewlett-Packard Laboratories, India

Social Computing Services 171

include online social networking platforms like Facebook and LinkedIn; content
sharing sites like YouTube and Flickr; content creation sites like Blogger and
Wikipedia. As is obvious from these examples, not all social computing services
are similar. In some cases, the focus is on providing a space in the cloud where
social interactions can occur (example Facebook). In other social computing ser-
vices, the focus is on providing a platform for sharing user-generated content
(example YouTube). In yet other instances, social computing tools are embedded in
a primary service (example Amazon.com) wherein the web-based retailer creates
collective intelligence by mining user-created content to get user recommendations,
seller and buyer reputations and so on. Each social computing service is unique in
its focus – what is common among them is that each of them intelligently mines
the content created by users to create key differentiators. Therefore, we define
social computing2 as the interplay between users, the content they create and
approaches to mine this content.

The notion of user as contributor is, of course, fundamental to social comput-
ing. As stated earlier, User Generated Content (UGC) can take many forms for
example social media (videos on YouTube, photographs at Flickr), user opinion
(Reviews at Amazon, Feedback at eBay) or self-expression (personal pages at
Facebook, Blogs). The recent emergence of micro-blogging services like Twitter
is also interesting. The fact that real-world events get picked up by bloggers
before they show up on traditional media such as news web sites makes blogs
and micro-blogs a very attractive source for real-time search. In each of these
cases, content created by users form the data on which computing algorithms
operate to provide collective intelligence. These applications mine the content
created by multiple users and use it for creating usable knowledge such as a
user’s reputation, the importance of a web page, product recommendations for a
user and so on.

Social Networks on the Web
The popularity of Facebook has made the term “social network” commonplace in
today’s parlance. Most of us use the term to refer to our friends and family.
Though this is broadly correct, a more formal definition can be:

A social network is a graph made up of persons or individuals (or organizations)
as “nodes,” and an “edge” representing relationship between two individuals.
Edges can be created for different types of interdependency, such as friendship,
kinship, common interest, financial exchange, dislike, sexual relationships, or
relationships of beliefs, knowledge or prestige.

The important thing to note from this definition is an understanding that the
nodes and links in a network (graph) can be used to represent a variety of actors
and relationships among them. It may be noted that, when nodes represent people

2The terms “social computing” and “Web2.0” are sometimes used interchangeably in the literature
[23].

172 CHAPTER 4 Software as a Service

http://Amazon.com

and links represent friendship, we get a social network which is ideally suited for
social computing services like Facebook. There are two types of social networks.
Consider a social network where each node in the graph represents a user’s blog
and the links between them represent hyperlinks between blogs. This is an exam-
ple of a socio-centric network, i.e., a network representation where the program-
mer had access to all nodes and their inter-relationships. Now consider another
social network where each node in the graph represents a user’s email id and the
links between them represent email communications (such as the one found in
[24]). This graph was created from the perspective of one particular user. Such
network representations, known as ego-centric networks, represent the network
from a particular user’s perspective and hence operate on a smaller set of informa-
tion. For example, if Alice is a friend of Bob and Carol, she may or may not be
aware whether there exists a link between Bob and Carol.

Case Study: Facebook
Facebook has grown to be one of the most popular online social networking
web sites, as of the writing of this book. In addition to social applications that
allow users to upload photographs and “friend” each other, Facebook also pio-
neered the Open Graph API which allowed developers to leverage the social net-
working data that is present in Facebook.

Social Applications on Facebook
There is a wide variety of features offered for users on Facebook. Here is a brief
overview of the different types of social applications:

Newsfeed: Introduced in September 2006, this feature creates the signature
user experience for users on Facebook and serves as the backbone of many other
features. When users log in to their account, they see a constantly updated list of
their friends’ activity. Based on the privacy settings of the user, these updates
may include information about changes in friends’ profile, upcoming events, con-
versation among mutual friends, etc. Critics have focused on the cluttered nature
of the user experience and the privacy implications of this feature but users can
control the extent of newsfeed content they receive and share with others.

Notification: This feature can be thought of as the real-time version of News-
feed. For certain key events (example a friend shares a link on the user’s wall,
someone commenting on a post that the user previously commented on), the user
is notified as soon as these events occur. This feature too continues the constantly
updated or constantly in touch with friends flavor of Facebook.

Photos: This is one of the most popular applications on Facebook. According
to Facebook, it hosts more than 50 billion user photos (as of July, 2010), and
more than 3 billion of these photos are viewed every day. This is a very simple
application: users are allowed to upload their photographs and share them with
other users – the challenge really is in the scale. Creating an application that can
scale reliably and efficiently to such large usage scales is a key challenge for
some social applications.

Social Computing Services 173

Beacon: Introduced in November 2007 and shut down in September 2009, this
feature is a good example of the conflict between commercial opportunities and
privacy concerns in online social networks. Facebook partnered with 44 web sites
(including eBay® and Fandango®) so that a user’s activity on any one of these web
sites was automatically shared with the user’s friends. For example, if a user listed
an item for sale on eBay or purchased movie tickets and Fandango, this information
would be automatically relayed to the users’ friends via Newsfeed. For online retai-
lers, this offered a great opportunity for targeted advertising, and for Facebook, an
opportunity for additional revenue. However, the feature faced strong opposition
from users and privacy activists and was finally shut down.

Like: This is a very interesting and ambitious feature. In some ways, it is a follow-
up to the Beacon feature in that it seeks to expand the scope of Facebook beyond just
the Facebook web site. Web site developers can insert the Facebook Like button on a
web page (which has a URL, say http://www.cloudbook.com) as follows:

<fb:like href="http://www.cloudbook.com" font="arial"></fb:like>

If a Facebook user clicks on a Like button on a web page, a URL of this
web page is posted on user’s friends’ wall via Newsfeed. From a user perspective, it
allows users to share content they “like” on the Web – a feature very similar to social
bookmarking and offered by web sites like delicious® and Digg®. From the perspec-
tive of the web site owner who inserted the Like button on his web page, it allows a
potential for popularity (and increasing traffic on his web site) by exploiting the social
network of users who like the page. Finally, it allows Facebook to create a much
richer profile of the user and potential to become the single repository of user’s
content on the Web. The functionality of the Like feature can be further enhanced if
the web site owner who inserts the Like button on his web page also adds metadata
tags that describe the entity described by the web page.

Facebook Social Plug-ins
Facebook Login: Some readers would have noted that the Like feature is archi-
tecturally distinct from other features mentioned above. It is in fact, a plug-in that
any web site can insert on its web page. Another social plug-in is the Facebook
Login-button. If a web site developer inserts the Login button on his web page, a
visitor will see pictures of those friends who have already signed-up on this
web site. This of course, assumes that the user is logged onto Facebook – if not,
the user can use this button to login. For the user, this social plug-in can help
generate a level of trust and implicit-recommendation for the web site (since their
friends are already using this service) and for the web site, it helps build on its
reputation by leveraging the social network of existing users.

Adding a Facebook Login-button, on a web page can be done by adding the
following code:

<fb:login-button show-faces="true"></fb:login-button>

Please note that the Facebook developer site will automatically generate the
code if a URL is entered in the user interface.

174 CHAPTER 4 Software as a Service

http://www.cloudbook.com

Recommendations: Yet another social plug-in is recommendations. This
plug-in considers all the interactions a user’s friends have had with URLs from
the given web site (via other social plug-ins), and highlights these objects on
these URLs. This plug-in can then help users to focus their attention on specific
parts of the web site by leveraging information about which parts the user’s
friends have interacted with in the past. This plug-in can be useful as a navigation
aid added on complex web sites or in the discovery of new features. To add a
recommendation plug-in, on a web page (which has a URL, say http://www.
cloudbook.com), it is necessary to add code as follows:

<fb:recommendations site="http://www.cloudbook.com" font="arial"
border_color="light"></fb:recommendations>

An exhaustive coverage of all the social plug-ins supported is not in the scope
of this book. The aim here is to familiarize the user with the concept of a social
plug-in. A social plug-in is a piece of code which can be embedded in a web page
so that users’ interaction with that web page can be recorded and shared with other
users. It also makes the web page become a standalone entity on an online social
networking platform like Facebook, thus leveraging the services and functionality
offered by the platform.

Open Graph API
Social plug-ins are a simple way to start integrating social features into any web site.
However, they offer a limited set of functionality. To create a social application with
custom functionality, Facebook’s Open Graph API [25] which enables access to a
very rich source of user content can be used. As the name suggests, the core content
that this API exposes is represented as a social graph. As discussed earlier in this
section, a social network representation contains nodes and the links between them.
What exactly the nodes and links represent depends on the implementation and con-
text. It is common to represent people (or email addresses or blogs) as nodes and
“social relationships” (or email communication or hyperlinks) as links in a social net-
work representation. Facebook’s social graph has extended this notion, with every
entity on Facebook being represented as a node in their social graph. This approach
simplifies the API and makes it easier to use, as seen next.

Entities: Using a REST-based architecture, every entity (example, people, photos,
events) on Facebook is represented as a node in the social graph. Every node is also
assigned a unique ID and URL which makes accessing an entity on Facebook as sim-
ple as issuing a HTTP GET command (or typing the URL in your browser). To access
the data associated with an entity having identifier ID, the URL is https://graph.
facebook.com/ID. Note that the identifier (ID) may be system generated or may be
the username as created by the user and https://graph.facebook.com/me refers to
the current user. Some examples are shown in Table 4.1.

Accessing a URL of the type https://graph.facebook.com/ID returns all data
associated with the entity with the identifier ID. If you want only a subset of the data,
you can qualify this in the URL; for example, https://graph.facebook.com/

Social Computing Services 175

http://www.cloudbook.com
http://www.cloudbook.com
https://graph.facebook.com/ID
https://graph.facebook.com/ID
https://graph.facebook.com/me
https://graph.facebook.com/ID
https://graph.facebook.com/bgolub?fields=id,name,picture

bgolub?fields=id,name,picture will only return the id, name, and picture of the
user with ID bgolub.

Connection Types: Since the social graph contains nodes of different types, it
follows that the links between nodes also need to be “typed” too. In Facebook,
these are referred to as CONNECTION_TYPE. For a user with identifier my_ID, some
examples of connection types are given in Table 4.2.

If the developer doesn’t know all the different types of connections available for
a particular entity, adding metadata=1 to the object URL results in a JSON object
that includes a metadata property that lists all the supported connections for the

Table 4.1 Facebook Entity Information.

Entity URL Comments

Users https://graph.facebook.com/
userid

Data for user possessing userid

Pages https://graph.facebook.com/
pepsi

Data for Pepsi and other
products

Events https://graph.facebook.com/
5282952746

London Facebook Developer
Garage, event id = 5282952746

Groups https://graph.facebook.com/
8450870046/

Cloud Computing user group;
group id = 8450870046

Applications https://graph.facebook.com/
2439131959

Graffiti application; application
id = 2439131959

Photos https://graph.facebook.com/
10150232972314050

Picture of Pepsi cans from Pepsi
page; photo id =
10150232972314050

Profile photo https://graph.facebook.com/
10150309766585619

Profile photo of the Royal
Challengers Bangalore cricket
team, profile photo id =
10150309766585619

Table 4.2 Facebook Connection Types

URL Comments

https://graph.facebook.com/my_ID/books Books of user
https://graph.facebook.com/my_ID/events Events user has participated
https://graph.facebook.com/my_ID/groups Groups user is member of
https://graph.facebook.com/my_ID/likes Likes for user
https://graph.facebook.com/my_ID/movies Movies of user
https://graph.facebook.com/my_ID/home News Feed for user
https://graph.facebook.com/my_ID/notes Notes of user
https://graph.facebook.com/my_ID/photos Photos of user
https://graph.facebook.com/my_ID/albums Photo albums for user
https://graph.facebook.com/my_ID/videos Videos uploaded by user
https://graph.facebook.com/my_ID/feed Wall for user

176 CHAPTER 4 Software as a Service

https://graph.facebook.com/bgolub?fields=id,name,picture
https://graph.facebook.com/userid
https://graph.facebook.com/userid
https://graph.facebook.com/pepsi
https://graph.facebook.com/pepsi
https://graph.facebook.com/5282952746
https://graph.facebook.com/5282952746
https://graph.facebook.com/8450870046/
https://graph.facebook.com/8450870046/
https://graph.facebook.com/2439131959
https://graph.facebook.com/2439131959
https://graph.facebook.com/10150232972314050
https://graph.facebook.com/10150232972314050
https://graph.facebook.com/10150309766585619
https://graph.facebook.com/10150309766585619
https://graph.facebook.com/my_ID/books
https://graph.facebook.com/my_ID/events
https://graph.facebook.com/my_ID/groups
https://graph.facebook.com/my_ID/likes
https://graph.facebook.com/my_ID/movies
https://graph.facebook.com/my_ID/home
https://graph.facebook.com/my_ID/notes
https://graph.facebook.com/my_ID/photos
https://graph.facebook.com/my_ID/albums
https://graph.facebook.com/my_ID/videos
https://graph.facebook.com/my_ID/feed

given object. For example, to see all of the connections for the London Developer
Garage event, the following URL can be used:

https://graph.facebook.com/5282952746?metadata=1

This outputs (some of the output has been deleted for brevity):

{
"id": "5282952746",
"version": 0,
"owner": {

"name": deleted
"id": deleted

},
"name": "Facebook Developer Garage London",
"description": deleted

"metadata": {
"connections": {

"feed": "https://graph.facebook.com/5282952746/feed",
"members": "https://graph.facebook.com/5282952746/members",
"picture": "https://graph.facebook.com/5282952746/picture",
"docs": "https://graph.facebook.com/5282952746/docs"

},
"fields": [

{
"name": "id",
"description": "The group ID. generic 'access_token',
'user_groups', or 'friends_groups'. 'string'."

},
{

"name": "version",
"description": "A flag which indicates if the group was
created prior to launch of the current groups product in
October 2010. generic 'access_token', 'user_groups',
or 'friends_groups'. 'int' where '0' = Old type Group,
'1' = Current Group"

},
{

"name": "icon",
"description": "The URL for the group's icon. generic
'access_token', 'user_groups', or 'friends_groups'.
'string' containing a valid URL."

},
{

"name": "privacy",
"description": "The privacy setting of the group. generic
'access_token', 'user_groups', or 'friends_groups'.
'string' containing 'OPEN', 'CLOSED', or 'SECRET'"

},
]

},

Social Computing Services 177

https://graph.facebook.com/5282952746?metadata=1

Location (Entity and Connection Type): An entity type that deserves a
special mention is location. Certain locations have their own Facebook page (for
example, the Eiffel Tower). Such locations are also represented in the social graph
as nodes and assigned a unique ID and URL https://graph.facebook.com/
14067072198 is the node for the Eiffel tower. The connection type between a
user and a location is known as checkin and represents the notion of users having
visited a particular location in the real world. This information can be accessed as
follows:

GET https://graph.facebook.com/my_ID/checkins

If my_ID represents the ID of a user, the above API shows all the locations
that the user has visited and checked into. If my_ID represents the ID of a loca-
tion page, the above API shows all users that have visited this location and
checked in.

Search: Facebook’s architecture of the social graph subsumes not only
people and their social relationships with other people but entities and the var-
ious relationships between these entities. From a user-centric view point, differ-
ent connection types enable a user to be linked to diverse different entities in
the social graph; for example, what movies a user likes, which groups a user
belongs to, his photographs, and what events the user attended. This is an extre-
mely rich set of data which can enable multiple applications but sometimes this
data can get overwhelming and it becomes difficult to find what you are look-
ing for. The default method for accessing information about an entity works if
the ID or the username of the entity is known. It is also possible to use a URL
to find an entity in the social graph; for example, to find the movie The
Magnificent Ambersons on Facebook, if the movie’s URL is http://www.imdb
.com/title/tt0035015/, then the following refers to this entity in Facebook’s
social graph:

https://graph.facebook.com/?ids=http://www.imdb.com/title/tt0035015/

However, users of Facebook probably realize that this is not the way users
find entities on Facebook – rather they use the Search feature available on
Facebook. The Open Graph API also exposes the Search API for programmers.
The structure of the search API along with some examples is given in the follow-
ing code.

The Search API is a powerful tool for social applications that seek to leverage
social content which is not associated with a single user but can be categorized
according to other criteria; for example, finding groups on Facebook related to
programming, finding all locations that allow users to check-in, or finding all con-
ferences that have a presence on Facebook. The generic form of the Search API is
as follows

https://graph.facebook.com/search?q=QUERY&type=OBJECT_TYPE

For example, the query

https://graph.facebook.com/search?q=network&type=post

178 CHAPTER 4 Software as a Service

https://graph.facebook.com/14067072198
https://graph.facebook.com/14067072198
http://www.imdb.com/title/tt0035015/
http://www.imdb.com/title/tt0035015/

produces the following result, which is the list of posts that contain the word “net-
work” (note that only the first result is shown):

{
"data": [

{
"id": "100002366911800_140673586021538",
"from": {

"name": "New Labor",
"id": "100002366911800"

},
"link": "http://www.facebook.com/notes/new-labor/ouralp-

is-a-communication-network/140673586021538",
"name": "OurALP is a communication network,",
"description": "\nOurALP is a communication network, not a

faction. We have no official executive or leader. We are a
group of rank and file members of the ALP who consult
together and then each of us acts as we see fit...",

"icon": "http://static.ak.fbcdn.net/rsrc.php/v1/yY/r/
1gBp2bDGEuh.gif",

"type": "link",
"application": {

"name": "Notes",
"id": "2347471856"

},
"created_time": "2011-08-12T08:49:59+0000",
"updated_time": "2011-08-12T08:49:59+0000"

},

Similarly, the query

https://graph.facebook.com/search?q=network&type=page

produces the following output:

{
"data": [

{
"name": "Cartoon Network",
"category": "Tv network",
"id": "84917688371"

},
{

"name": "Food Network",
"category": "Tv network",
"id": "20534666726"

},

This is the list of pages with the word “network” in their name; only the
first two results are shown. Table 4.3 shows the other acceptable OBJECT_TYPE
values.

Social Computing Services 179

Extending Open Graph
In the section Social Plug-ins earlier, Facebook Like and other social plug-ins were
described. The Like button can be embedded on any web page. It was also noted that
the Like plug-in seeks to expand the scope of Facebook beyond just the Facebook
web site. As per Facebook, if the web site developer adds some Facebook-recom-
mended metadata (referred to as Open Graph tags) to his page, the web page can
become the “equivalent of a Facebook page”. What this means is that the Facebook
social graph described in the section “Open Graph API” can contain any web page
as a node if Open Graph tags are added. Open Graph tags contain metadata by which
Facebook can understand the web page. They provide a structured representation of
the webpage to Facebook. The following code example shows the metadata that
Facebook recommends web site developers must add to their web page to integrate it
into Facebook’s social graph. The metadata being added is self-explanatory.

<html xmlns:og="http://opengraphprotocol.org/schema/"
xmlns:fb="http://www.facebook.com/2008/fbml">

<head>
<title>The Magnificent Ambersons (1942)</title>
<meta property="og:title" content="The Magnificent Ambersons"/>
<meta property="og:type" content="movie"/>
<meta property="og:url" content="http://www.imdb.com/title/
tt0035015/"/>
<meta property="og:image" content="http://ia.media-imdb.com/images/
M/MV5BMTg3NjE2OTIwNl5BMl5BanBnXkFtZTYwODk5MTM5._V1._SY317_.jpg "/>
<meta property="og:site_name" content="IMDb"/>
<meta property="fb:admins" content="USER_ID"/>
<meta property="og:description"

content="The spoiled young heir to the decaying Amberson
fortune comes between his widowed mother and the man she has
always loved."/>

...
</head>
...

</html>

Table 4.3 Facebook Search API

Entity type Query

User with <userid> in name https://graph.facebook.com/search?
q=<userid>&type=user

Events with string <eee> in name;
e.g., <eee> = conference

https://graph.facebook.com/search?
q=<xxx>&type=event

Groups with string <ggg> in name https://graph.facebook.com/search?
q=<ggg>&type=group

Check-ins https://graph.facebook.com/search?type=checkin

180 CHAPTER 4 Software as a Service

https://graph.facebook.com/search?q=<userid&ggt;&type=user
https://graph.facebook.com/search?q=<userid&ggt;&type=user
https://graph.facebook.com/search?q=<xxx&ggt;&type=event
https://graph.facebook.com/search?q=<xxx&ggt;&type=event
https://graph.facebook.com/search?q=<ggg&ggt;&type=group
https://graph.facebook.com/search?q=<ggg&ggt;&type=group
https://graph.facebook.com/search?type=checkin

Additional metadata like location and contact information can also be added.
The set of recommended metadata tags is consistent with Facebook’s claim that
they are optimized for integrating those web pages that represent real-world things
like movies, sports teams, restaurants, etc.

A quick word on how a web page becomes a part of the Open Graph. The
first step is to add the Like button social plug-in to the web page. Next, add the
recommended metadata tags as explained above. Now, when a user clicks on
the Like button on the web page, a connection is made between the page and the
user – and the web page is now part of the social graph. Functionally, the
web page (a) appears in the Likes and Interests section of the user’s profile, (b)
can push content (example ads) to the user’s wall and (c) shows up in Facebook
searches.

Social Media Web Site: Picasa
Picasa focuses on social media experience centered on personal media. Picasa
allows users to share their photographs with family and friends. Additionally, it
allows users to create albums from photographs, add tags and other metadata like
location, comment on photographs of other users, etc.

The Picasa API
The Picassa API [26] is similar in spirit to the Facebook API though there is no
notion of Open Graph or social plug-in. As can be seen in Table 4.4, the REST
APIs are very similar in intent to that of Facebook APIs. The fields which are
parameters to the API are enclosed in '< >'. For example <userID> is the userid of
the user. Picasa uses Google’s userid’s for <userID> and when it is set to default,
the activity refers to the current user. The other parameters, such as <albumID>, are
unique ids generated by Picasa. These ids are returned as a result of various calls;
for example, the API shown in the first row of Table 4.4 returns a list of <albumID>,
which can then be used to find a list of <photoID> in the album. Examples of these
ids can be found in the example code segment shown next for a use case of
searching for pictures of the Taj Mahal.

http://picasaweb.google.com/data/ is the common part of the APIs shown
above. The term feed in the URL specifies that the result should be returned in
the format of an ATOM feed. A snippet of an example ATOM feed that one such
REST API returns is shown in the following code. As can be seen, this data is a
rich source of information for photographs as it contains information about
location, EXIF metadata, comments, tags, title, etc.

<?xml version='1.0' encoding='utf-8'?>
<feed xmlns='http://www.w3.org/2005/Atom'...
<updated>2011-08-13T06:32:18.072Z</updated>
<title type='text'>Search Results</title>...
<openSearch:totalResults>158377</openSearch:totalResults>...
<entry>...

Social Computing Services 181

http://picasaweb.google.com/data/

<id>http://picasaweb.google.com/data/entry/api/user/<deleted>/
albumid/5114761574886048065/photoid/5114761725209903490</id>...
<title type='text'>DSC00675.JPG</title>
<summary type='text'>Taj Mahal, from the 2006 trip. </summary>
<content type='image/jpeg'
src='http://lh6.ggpht.com/-7FDWt-hEeU0/RvtIsJ3mgYI/AAAAAAAAAcE/
TrmtAzW1x88/DSC00675.JPG'/>...
<gphoto:id>5114761725209903490</gphoto:id>...
<gphoto:position>0.9782609</gphoto:position>...
<gphoto:commentCount>40</gphoto:commentCount>...
<exif:tags>

<exif:fstop>5.0</exif:fstop><exif:make>SONY</exif:make><exif:
model>DSC-H2</exif:model>
<exif:imageUniqueID>4e7378f98016420d001c7269504db13b</exif:
imageUniqueID>

</exif:tags>
</entry>
</feed>

In addition to ATOM feeds, other types of simple HTTP responses are also
supported. The following APIs show how to update a photo and metadata, or

Table 4.4 Picasa API

Query REST API

Requesting a list of albums for a particular
user

GET http://picasaweb.google.com/
data/feed/api/user/<userID>

Listing photos in an album with the id
<albumID>, belonging to user <userID>

GET http://picasaweb.google.com/
data/feed/api/user/<userID>/
albumid/<albumID>

Listing tags that user <userID> has used
in photos in their albums

GET http://picasaweb.google.com/
data/feed/api/user/<userID>?
kind=tag

Listing tags for photo <photoID> http://picasaweb.google.com/
data/feed/api/user/default/
albumid/<albumID>/photoid/
<photoID>?kind=tag

Listing comments for photo <photoID> http://picasaweb.google.com/
data/feed/api/user/default/
albumid/<albumID>/photoid/
<photoID>?kind=comments

Searching for photos tagged with both
"tag1" and "tag2" and belonging to
<userID>

GET http://picasaweb.google.com/
data/feed/api/user/<userID>?
kind=photo&tag=tag1,tag2

Searching for photos uploaded by other
users (Context=all), matching a search for
"Taj Mahal”, maximum of 10 photos

GET http://picasaweb.google.com/
data/feed/api/all?q=Taj%
20Mahal&max-results=10

182 CHAPTER 4 Software as a Service

http://picasaweb.google.com/data/feed/api/user/<userID>
http://picasaweb.google.com/data/feed/api/user/<userID>
http://picasaweb.google.com/data/feed/api/user/<userID>/albumid/<albumID>
GEThttp://picasaweb.google.com/data/feed/api/user/<userID>/albumid/<albumID>
GEThttp://picasaweb.google.com/data/feed/api/user/<userID>/albumid/<albumID>
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=tag
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=comments
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=comments
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=comments
http://picasaweb.google.com/data/feed/api/user/default/albumid/<albumID>/photoid/<photoID>?kind=comments
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=photo&tag=tag1,tag2
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=photo&tag=tag1,tag2
http://picasaweb.google.com/data/feed/api/user/<userID>?kind=photo&tag=tag1,tag2
http://picasaweb.google.com/data/feed/api/all?q=Taj%20Mahal&max-results=10
http://picasaweb.google.com/data/feed/api/all?q=Taj%20Mahal&max-results=10
http://picasaweb.google.com/data/feed/api/all?q=Taj%20Mahal&max-results=10

photo only, or metadata only. The photo and/or metadata should be in the body of
the PUT statement. Only the full metadata can be replaced with this API.

Updating a photo and metadata or photo only
PUT http://picasaweb.google.com/data/media/api/user/<userID>/albumid/
<albumID>/photoid/<photoID >

Updating a photo's metadata only
PUT http://picasaweb.google.com/data/entry/api/user/<userID>/albumid/
<albumID>/photoid/<photoID >

The API part of the URL specifies that all metadata associated with the object
should be returned and should be read-write enabled. The remaining part of the
URL is specific to the particular REST API functionality. As an example, a com-
plete post message which enables posting a photo with metadata is shown next.

Content-Type: multipart/related; boundary="END_OF_PART"
Content-Length: 4234766347
MIME-version: 1.0

Media multipart posting
–END_OF_PART
Content-Type: application/atom+xml

<entry xmlns='http://www.w3.org/2005/Atom'>
<title>Taj Mahal.jpg</title>
<summary>Wife and I in front of Taj Mahal 2009</summary>
<category scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/photos/2007#photo"/>

</entry>
–END_OF_PART
Content-Type: image/jpeg
...binary image data...
–END_OF_PART—

Wrapper Libraries
Most programmers prefer not to work directly with the REST APIs and instead
use libraries that abstract out most of the common processing needed across multi-
ple calls. It is common for libraries to provide functionality which parses the con-
tent received from GET calls. It is also common for these libraries to provide
functionality which adds some default content in POST messages.

Libraries are available in many programming languages. The python library for
Picasa is used as an example here. To start using any library, it first needs to be initia-
lized. For the python Picasa library, initialization will look something like this:

import gdata.photos.service
import gdata.media
import gdata.geo
gd_client = gdata.photos.service.PhotosService()

Social Computing Services 183

Once you have initialized the interface, the application needs to be authenticated
(while that is not shown here, the next section describes OAuth API for Facebook,
to give the reader an idea of what is done). Now social applications can be written
using the library. The following code segments show python library calls
corresponding to the REST API calls described in the beginning of this section.
Note that the python functions process the data returned by GET calls. As a pro-
grammer, it is not necessary to parse the Atom feed every time. Instead, the library
parses and stores this data in a nice class structure.

The code for requesting a list of albums for a particular userID is as follows.

albums = gd_client.GetUserFeed(user=username)
for album in albums.entry:
print ‘title: %s, number of photos: %s, id: %s' % (album.title.text,

album.numphotos.text, album.gphoto_id.text)

Listing photos in an album with the id albumID, belonging to user userID, is
done as follows:

photos = gd_client.GetFeed(
'/data/feed/api/user/%s/albumid/%s?kind=photo' % (

username, album.gphoto_id.text))
for photo in photos.entry:
print 'Photo title:', photo.title.text

Listing tags that user userID has used in photos in their albums:

tags = gd_client.GetFeed('/data/feed/api/user/%s?kind=tag' % username)
for tag in tags.entry:

print 'Tag', tag.title.text

Listing tags by photo:
tags = gd_client.GetFeed('/data/feed/api/user/%s/albumid/%s/photoid/%
s?kind=tag' % (username, album.gphoto_id.text, photo.gphoto_id.text))
for entry in feed.entry:
print 'Tag', entry.title.text

The way to list comments by photo is as follows:

comments = gd_client.GetFeed(

'/data/feed/api/user/%s/albumid/%s/photoid/%s?kind=comment&max-
results=10' % (
username, album.gphoto_id.text, photo.gphoto_id.text))

for comment in comments.entry:
print 'Comment', comment.content.text

Searching photos using tags tagged with both “foo” and “bar” and belonging
to userID is as follows:

photos = gd_client.GetTaggedPhotos('foo,bar', user=username)
for photo in photos.entry:
print 'Title of tagged photo:', photo.title.text

184 CHAPTER 4 Software as a Service

Searching photos uploaded by other users, matching a search for “puppy”:

photos = gd_client.SearchCommunityPhotos('puppy', limit='10')
for photo in photos.entry:
print 'Community photo title:', photo.title.text

Micro-Blogging: Twitter
Twitter is a micro-blogging and social networking site. Like a blog it allows its
users to write anything. However, the trigger line ‘What’s happening’ suggests that
users mostly write about in-the-moment experiences – like a self-created status
message. Unlike typical blog sites, Twitter users are restricted to 140 characters or
less (hence “micro”). Also, like other blogging services, Twitter allows users to
subscribe to blogs of other users so that users can follow other users and read their
micro blogs (also known as status or tweets in twitter lingo).

Consider the example shown in Figure 4.11: Three Twitter users, Alice, Bob
and Carl, where Bob and Carl subscribe to Alice’s tweets but Alice does not
subscribe to anyone’s tweets. Bob and Carl are therefore called followers of
Alice. When Alice posts a micro-blog (or tweet) on twitter, Bob and Carl are
notified and can read Alice’s tweet. Note that when Bob posts a tweet, Alice is
not notified, though the tweet is public. Alice may access or search for it later.
One interesting aspect of Twitter’s social network, which is created by users
following other users, is its asymmetric nature. In the example, the Twitter
social graph (Figure 4.11) will have a directed link from Bob to Alice and from
Carl to Alice but there would be no links originating from Alice. In Twitter ter-
minology, Alice has two followers but no friends. Bob has Alice as a friend
and Carl has Alice as a friend.

Another important thing to note about Twitter is its real-time feature. Tweets
are distributed in real-time; i.e., a tweet is delivered almost as soon as it is
posted. A lot of interest in Twitter is due to the real-time nature of the informa-
tion that traverses Twitter. This has led to innovations centered around analysis
of tweets on a timeline to determine trends, changes in users’ preferences and
so on.

Tweets

Alice

Carl

Bob

Followers

Notified
when
Alice
tweets

FIGURE 4.11

The Twitter social graph for the example.

Social Computing Services 185

NOTE
Summary of Twitter APIs
• Lists of followers and friends
• Real-time: last n tweets
• Streaming: continuous feed of tweets
• Geo-tagged: tweets from one or more locations

Twitter API
The REST APIs that allow developers to access the preceding Twitter data are
specified in Twitter Developer Documentation [27]. Twitter supports both JSON
and XML responses from its REST API. First, Table 4.5 contains code snippets
that show the difference between accessing friends and followers described
earlier.

There are also many APIs available to access the real-time features of Twitter.
Some APIs that support time-based analysis of tweets (or statuses) are shown in
Table 4.6.

Yet another set of APIs which exploit the real-time nature of Twitter are
called Streaming APIs [28]. These are useful when an application that uses
social networking data depends on the analysis of real-time data. One way to do
this is to call an API to retrieve the needed data iteratively in a loop. A more
efficient way is to use a stream API which will stream data to the application in
real-time. To quote the official documentation, this Twitter API allows “high-
throughput near-real-time access to various subsets of public and protected
Twitter data.”

Consider another example of a social application that tracks and analyzes
tweets about some topic (for example, sports) in real time. To receive JSON
updates about keywords related to the topic, it is necessary to create a file called

Table 4.5 Twitter APIs

Operation REST API

Get extended information of a given user
(including latest status), specified by
screen name

GET http://api.twitter.com/1/
users/show.xml?
screen_name=praphulcs

Search API (search for a user specified by
screen name)

GET http://api.twitter.com/1/
users/search.xml?q=Praphul%
20Chandra

Get list of user’s friends, each with current
status inline

GET http://api.twitter.com/1/
statuses/friends.xml?
screen_name=praphulcs

Returns the user’s followers, each with
current status inline

GET http://api.twitter.com/1/
statuses/followers.xml?
screen_name=praphulcs

186 CHAPTER 4 Software as a Service

http://api.twitter.com/1/users/show.xml?screen_name=praphulcs
http://api.twitter.com/1/users/show.xml?screen_name=praphulcs
http://api.twitter.com/1/users/show.xml?screen_name=praphulcs
http://api.twitter.com/1/users/search.xml?q=Praphul%20Chandra
http://api.twitter.com/1/users/search.xml?q=Praphul%20Chandra
http://api.twitter.com/1/users/search.xml?q=Praphul%20Chandra
http://api.twitter.com/1/statuses/friends.xml?screen_name=praphulcs
http://api.twitter.com/1/statuses/friends.xml?screen_name=praphulcs
http://api.twitter.com/1/statuses/friends.xml?screen_name=praphulcs
http://api.twitter.com/1/statuses/followers.xml?screen_name=praphulcs
http://api.twitter.com/1/statuses/followers.xml?screen_name=praphulcs
http://api.twitter.com/1/statuses/followers.xml?screen_name=praphulcs

sportstracking that contains “track=cricket, soccer, tennis, badminton” and
then do:

curl -d @sportstracking http://stream.twitter.com/1/statuses/filter.
json -u<appUserId>:<password>

curl is a command line tool for transferring data with URL syntax and it
supports HTTP and other common protocols [29]. Of course, appUserID and
password are the userid and password the application uses to retrieve data.
Similarly, consider a social application which tracks and analyzes tweets from a
particular location in real time. Twitter has an API called the Geotagging API
(which specifies the latitude and longitude where the tweet was generated), and
some twitter clients generate messages which are geo-tagged. To receive JSON
updates about tweets geo-tagged with a particular location, it is necessary to
create a file called 'locations' that contains a bounding box for the desired
location. The bounding box is a pair of latitudes and longitudes that defines a
rectangular box on the map. The locations file can contain multiple bounding
boxes to track tweets from multiple locations. For example, locations = 16.786,
−3.018, 16.76, −2.997 is a bounding box for Timbuktu (Tombouctou) in Mali,
where 16.786 and −3.018 are the latitude and longitude, respectively, of one
corner of the bounding box, and 16.76, −2.997 specifies the other corner (see
Figure 4.12).

The statement locations = 16.786, −3.018, 16.76, −2.997, 16.726, −3,
16.714, −2.972 is a pair of bounding boxes for Timbuktu and the nearby town of
Kabara. Using the above statement in the locations file, one can get tweets for
Timbuktu and Kabara as follows:

curl -d @locations
http://stream.twitter.com/1/statuses/filter.json -u<appUserid>:<password>

There is another interesting way to add location information to tweets. Instead
of simply adding latitude, longitude information, tweets may add a more semantic
notion of location, i.e., the city or the neighborhood from which the tweet was
made. To aid this, twitter provides an API (reverse_geocode) which searches for
places (cities and neighborhoods) that can be attached to a tweet. Given latitude

Table 4.6 Twitter Time-Dependent APIs

Get the 20 most recent statuses from
non-protected users

GET http://api.twitter.com/
version/statuses/
public_timeline.json

Get the 20 most recent statuses posted
by screen_name

GET http://api.twitter.com/
version/statuses/user_timeline.
json?screen_name=praphulcs

Get the 20 most recent mentions for the
authenticated (current) user

http://api.twitter.com/version/
statuses/mentions.json

Social Computing Services 187

http://api.twitter.com/version/statuses/public_timeline.json
http://api.twitter.com/version/statuses/public_timeline.json
http://api.twitter.com/version/statuses/public_timeline.json
http://api.twitter.com/version/statuses/user_timeline.json?screen_name=praphulcs
http://api.twitter.com/version/statuses/user_timeline.json?screen_name=praphulcs
http://api.twitter.com/version/statuses/user_timeline.json?screen_name=praphulcs
http://api.twitter.com/version/statuses/mentions.json
http://api.twitter.com/version/statuses/mentions.json

and longitude pair, or an IP address, this API returns a list of all the valid cities
and neighborhoods that can be used as a place_id in a tweet post:

http://api.twitter.com/1/geo/reverse_geocode.json?lat=16.786&long=-
3.018

A client application can use this API with user’s lat, long location information
to retrieve a list of “places”, have the user validate the location where he or she
is, and then send this place_id with a call to statuses/update.

Open Social Platform from Google
So far in this section, three popular social web sites which provide APIs for the devel-
opment of social applications have been described. Though all the three web sites pro-
vided REST APIs, the conventions used in each of the three web sites were different.
There are many more such social web sites with their own conventions. This diversity
is probably important for providing a choice to users and to drive innovation in this
emerging field. However, from a programmer’s perspective, this diversity provides a
challenge. How many different APIs can their application support? There is a need for
some uniformity. Google’s Open Social platform [30] tries to provide a uniform API
to interact with many web sites. It is basically a set of APIs which serves as an
abstraction layer over multiple social web sites and services or containers in the termi-
nology of Open Social. This approach has had some success but it is not guaranteed
that every social platform will support this (though most likely). The reader is directed
to the Open Social developer web site [30] for more information.

Privacy Issues: OAuth
One of the key aspects when programming for social computing is to keep in
mind the aspect of privacy. By definition, social computing is about users, their

(16.76, −3.018) (16.786, −3.018)

(16.76, −2.997) (16.786, −2.997)

FIGURE 4.12

Bounding box for Timbuktu.

188 CHAPTER 4 Software as a Service

relationships with other users and the content they create. When programming
using this content, an appreciation for user’s expectations for privacy would be
key in understanding the underlying architecture of many “social applications”
and also for ensuring that an application does not violate a user’s privacy
expectations.

The following examples illustrate some of the issues. Consider a social applica-
tion that has been downloaded by user Alice. If Alice is linked to Bob in the appli-
cation’s social network, and Bob has marked a video as a favorite on YouTube,
does the application (in-use by Alice) have the right to access and use Bob’s favor-
ite video? Again, assume Alice is a friend of Bob’s on an online social networking
site (for example, Facebook). Bob is also a friend of Carol; however, Alice is not a
friend of Carol. Can Alice’s application access information about Carol’s profile?
Actually, there is no right or wrong answer here. Different users have different
expectations of privacy. More importantly, different social networking portals
enforce different privacy policies. These policies are reflected in what the APIs do
and do not expose to the programmer. Even when online social networking portals
do allow applications to access user’s content, they require that the application
explicitly take permission from the user before accessing their content.

Consider another example, that of a social application for Facebook that seeks to
create a movie recommendation application based on what movies a user and her
friends like. Now, suppose a particular user Alice wants to use the application. To
function, the application needs to access the movies that Alice likes, her list of
friends and the movies they like. How does the application get this information?
The application can ask Alice to provide her Facebook username and password
which can be used to then access all of the desired information. This approach,
though simple, has significant security loopholes. First, Alice has no reason to trust
the application, which may actually use her username and password to acquire her
personal photographs and misuse them. Alice has no way of ensuring that the
application does not do the latter. Second, once Alice has given the application her
username and password there is no way for her to take it back. The application can
now and in the future access all of Alice’s private information on Facebook. Of
course, Alice can change her username and password to block the application but
this approach does not scale very well – expecting the user to change her username
and password after a single use of a social application will only ensure that no one
uses such applications. Hence, what is needed is a security architecture that enables
social applications to access specific content for specific periods of time without
requiring the user to share her username and password with this application. There
are multiple security architectures that achieve this: for example, Google AuthSub,
Yahoo! BBAuth, Flick API and the OAuth protocol. Among them the growing
open standard architecture is OAuth, explained next.

Overview of OAuth
OAuth provides a method for users to grant applications access to their
“resources” without sharing their passwords. It also provides a way to grant

Social Computing Services 189

limited access (in scope, duration, etc.) Though an intensive coverage of the
OAuth security protocol is beyond the scope of this chapter, this section is
intended to give the readers an overview of the architecture so as to develop an
appreciation of the authentication flow which their application will undergo so as
to help debug their code, in case of any errors.

The key architecture change introduced in OAuth is the notion of a resource
owner. In the traditional client-server authentication paradigm, the client uses
her security credentials (username & password) to authenticate herself to the
server. OAuth introduces a third role in this model – the resource owner. The
separation between the resource owner and the client is significant – the client
acts on behalf of the resource owner but is NOT the resource owner. For our
purposes, the terminology mapping mentioned in Table 4.7 would be helpful.
With this mapping, it becomes easier to understand the use of OAuth for social
applications.

In order for a social application to access resources from a server (social
network site, e.g., Facebook) on behalf of a resource owner (user), it has to obtain
permission from the resource owner. OAuth enables this permission in the form
of a token and a matching shared secret. The purpose of the token is to make it
unnecessary for the resource owner to share her username and password with the
client. OAuth protocol can be used for applications other than social networking.
The data flow for using OAuth protocol (Figure 4.13) in the context of social
computing is as follows.

1. User makes a request to a social application.
2. Social application redirects user to Social networking (SN) site with a

redirect_uri.
3. SN site informs user (via an user interface) about the resources the social

application is requesting access for and asks for a confirmation.
4. User grants request by typing in her security credentials (username and

password).
5. SN site authenticates the user’s security credentials.
6. If correct, SN site sends a token & a shared secret to the social application and

redirects user to redirect_uri. (Else request is rejected).
7. SN application uses token & shared secret to access resources which it has

been granted access to.

Table 4.7 Terminology Mapping For OAuth

Resource
Owner

User (human)

Client Social application (deployed on user’s PC and / or a back-end
server)

Server A social networking site holding user’s private data (e.g., Facebook)

190 CHAPTER 4 Software as a Service

Using OAuth in Facebook: As discussed, users can explicitly allow other
applications to access their content on social networking sites without exposing
user’s Facebook username and password. This section shows use of Facebook
APIs that use OAuth to do so. The following are the steps needed to authenticate
an application that wants to access users’ non-public content on Facebook.

1. Register the application to get an app ID and secret for the application. One
can do this by clicking on "Create New App" and following the regular
registration instructions at http://www.facebook.com/developers/createapp
.php. At the end of the registration procedure, Facebook allocates an App Id
and App Secret as below:

App ID: 275910438759498
App Secret: 20182e6931efd7939a01135e1baaa5d3

From OAuth perspective, from now on this Facebook app ID is the client_id
and the Facebook application secret is the client secret.

2. The following URL redirects the users to Facebook so that they can login
and grant access to the application and also specifies the URL that the user
should be redirected to, after the completion of the authorization process

Shares secret

Resource owner

OAuth client

OAuth server

Authentication

request

Inter-application
communication

Back-end of the
application

Front end
of the

application

FIGURE 4.13

High-level architecture of OAuth.

Social Computing Services 191

http://www.facebook.com/developers/createapp.php
http://www.facebook.com/developers/createapp.php

(redirect_uri). The user is now taken to a screen which looks as shown in
Figure 4.14.

https://www.facebook.com/dialog/oauth?
client_id=<AppId>&redirect_uri=www.pustak.com&scope=email,
read_stream

3. If the user authorizes the application, Facebook redirects the user back to the
redirect_uri specified with an additional argument (code=string) where
string is the verification string (code or session authcode) that can be used to
get the access token for the app.

4. The verification string must be exchanged to get an access token. This is done as
with the following API, with exactly the same redirect_uri as in the previous step.

https://graph.facebook.com/oauth/access_token?client_id=<Facebook
AppId>&redirect_uri=http://www.pustak.com/oauth_redirect&client_
secret=<Facebook App Secret>&code=<session authcode>

The response to the above API is an access token (access_token parameter)
together with the number of seconds until the token expires (the expires para-
meter). An example response can be as follows:

Access_token=12178242641841264|safkhjfsafh317813.jhffas.
244&expires=5108

FIGURE 4.14

User authorizes the application to access his/her Facebook data.

192 CHAPTER 4 Software as a Service

5. The application then uses the access token returned by the request above to
make requests on behalf of the user for Facebook details. If the application
needs infinite time access, the application can request for offline_access
permission.

In this section, the reader obtains a good understanding of the different APIs
used to write social applications using data from popular social networking sites.
There is a lot of literature on algorithms that can be used in these social applica-
tions and those are beyond the scope of this book. A good introduction to this
topic is the book Programming Collective Intelligence by Toby Segaran [31]. It
introduces some very interesting algorithms that can leverage data made available
by social web services from a programmer’s perspective. Analysis of social net-
works to understand user behavior is also a very interesting topic to study [32].
Finally, social computing is a highly dynamic and fast-growing area of research,
so the reader has to refer to the latest research publications and API documenta-
tion to be current.

DOCUMENT SERVICES: GOOGLE DOCS
As mentioned in the Social Networking section, an important use of cloud com-
puting is for sharing data. This sharing can be either with friends and colleagues
as described before or just sharing for personal use across multiple devices. It is
not uncommon for a consumer to own more than one computing device (an office
laptop, a home computer and maybe even a mobile personal device). In those
cases, use of a cloud service just to upload a document to a secure place, and
using it across multiple personal devices anytime, anywhere is very valuable.
Many such cloud services, e.g., www.dropbox.com, www.slideshare.com, www
.scribed.com, exist. Over and above this, if the cloud service allows one to share
these documents with a selected number of friends, and also allows a subset of
them to modify and update, then it will be a very useful tool for collaboration as
well. We’ll look at more details of such features of document services using
Google Docs as a case study.

Using Google Docs Portal
Google Docs is a popular cloud application and a very good example of a colla-
borative document service. It allows users to create and edit documents online as
well as enables teams of people to share and work together on a single document.
Its basic features are very simple – share, edit or simply store documents. How-
ever, this is now such a fundamental feature of society that Google Docs has
become extremely popular in recent years.

Figure 4.15 shows a screenshot of the Google Docs home page after the user
logs in. The page lists the files in the Test folder. The bar on the left shows

Document Services: Google Docs 193

http://www.dropbox.com
http://www.slideshare.com
http://www.scribed.com
http://www.scribed.com

other sets of files (e.g., those that meet a specific criterion – such as files Owned
by me) or other folders (e.g., Folders shared with me). Action buttons on the
top indicate actions that can be performed on selected or all files. The figure
shows two files have been selected. In particular, the Share button allows the
selected documents to be shared with other users. When sharing, the user will
be asked whether to share just with “can view” permission or shared as “can
edit” for each user. This will accordingly set the read and read-write permis-
sions for each user.

These documents in the Test folder would have been either created fresh
using Google Docs itself or created on the local computer and uploaded onto
Google Docs. These two options are shown on the top left-hand menu. It is
easy to create new documents using Google Docs. Figure 4.16 shows a screen-
shot of the page that appears for creating a presentation. It can be seen that the
page is very similar to the view one would get with a presentation software
package (such as Microsoft PowerPoint). A difference, however, is the Share
button on the top right of the page. Clicking this button allows the presentation
to be shared, so that multiple users can collaborate in the development of the
document. In addition to presentations, users can also collaborate on documents,
spreadsheets, and drawings.

There are desktop tools that simplify uploading of documents to Google Docs
with just a simple drag-and-drop facility. An example of such tools is ListUploader
for Windows or GDocsUploader for Mac OS X. The FireFox browser also supports
a plug-in called GDocsBar, which supports a drag-and-drop upload onto the side-
bar. Also, when a document is shared with a group of users, one can track who
read the document by using Google Analytics. This is just a simple option that
needs to be enabled in Google Docs. As the service becomes more and more popu-
lar, more such simpler usage modes will be established.

FIGURE 4.15

Google Docs home page.

194 CHAPTER 4 Software as a Service

Using Google Docs APIs
Google Docs also provides APIs that allow users to develop applications that
upload documents to the Google Docs service and share documents [33]. When
using any Google product, one should be aware that Google Data Protocol
(GDP) is being used under the hood. GDP provides a secure means for new
applications to let end users access and update the data stored by many Google
products. Since GDP uses GET and POST requests, users may also use the
protocol directly using any of the supported programming languages provided
by HTTP client libraries. REST APIs similar to the one used for Facebook
enable one to directly use the protocol. In this section, an example usage in
Java is described. As an example, the Google Documents List API, that allows
users to programmatically access and manipulate user data stored on Google
Docs, is used [33].

NOTE
This example program demonstrates how one can upload and share documents using
GData API.

The following is an example application that demonstrates several features of
document sharing. The application first uploads a document onto Google Docs,
and then shares the document to people on a mailing list (Google groups id),
which also sends an email notifying those people about the document. Since the
complete program runs to multiple pages, only the key snippets of the program
will be described in this section.

FIGURE 4.16

Google Docs create presentation.

Document Services: Google Docs 195

First of all, the main Google Docs packages that one needs to import are the
following.

import com.google.common.*;
import com.google.gdata.util.*;
import com.google.gdata.client.uploader.*;
import com.google.gdata.data.docs.*;
import com.google.gdata.data.media.*;
import com.google.gdata.data.acl.*;

A Simple Example
First, consider a very simple example that uploads a file without taking care of
upload errors. Below is a snippet of Java code for doing this. This method throws
an IOException when there is a communication or network error during upload.
The uploadURL (hardcoded here for simplicity) points to the Google Docs URL
for upload. Then a DocService object is created, and the user credentials are set
for that object. After that, it is simple to upload a file – just set the filename, and
title, and then call the insert method of the service.

public DocumentListEntry uploadFile(String filepath, String title)
throws IOException, ServiceException,
DocumentListException {

URL createUploadUrl = new URL
("https://docs.google.com/feeds/upload/default/private/
full");

DocsService service = new DocsService("Pustak Portal");
service.setUserCredentials(gmail_user, gmail_pass);

File myfile = new File(filepath);
String mimeType = DocumentListEntry.MediaType.fromFileName(

file.getName()).getMimeType();

DocumentEntry myDocument = new DocumentEntry();
myDocument.setFile(myfile, mimeType);
myDocument.setTitle(new PlainTextConstruct(title));

return service.insert(createUploadUrl), myDocument);
}

The following code snippet shows how the methods of DocumentListEntry
can be used to print out the details of the uploaded file.

public void printDocumentEntry(DocumentListEntry doc) {
StringBuffer buffer = new StringBuffer();
buffer.append(" -?- " + doc.getTitle().getPlainText() + " ");
if (!doc.getParentLinks().isEmpty()) {

for (Link link : doc.getParentLinks()) {
buffer.append("[" + link.getTitle() + "] ");

}
}

196 CHAPTER 4 Software as a Service

buffer.append(doc.getResourceId());
output.println(buffer);

}

TIP
If ResumableGDataFileUploader is used to upload data, then even connection
disruptions are handled well.

Handling Disruptions in the Network
Uploading huge files takes a long time and one cannot expect that the client will
be always connected during the upload time interval. The upload may fail in the
middle because of disruptions in the network. Unfortunately, HTTP does not
provide any guidance for reliably restarting failed uploads. However, Google
Docs has APIs to handle such disruptions, and for that it is necessary to use the
Java class called ResumableGDataFileUploader. For this, the following code
should be executed in a Java thread, and the Listener pattern used to wait for the
completion of the upload.

int MAX_CONCURRENT_UPLOADS = 10;
int PROGRESS_UPDATE_INTERVAL = 1000;
int DEFAULT_CHUNK_SIZE = 10485760;

// Create a listener
FileUploadProgressListener listener = new FileUploadProgressListener();
// Pool for handling concurrent upload tasks
ExecutorService executor =

Executors.newFixedThreadPool(GDataConstants.
MAX_CONCURRENT_UPLOADS);

// Get the file to upload
File file = new File(fileName);
URL createUploadUrl = new URL

("https://docs.google.com/feeds/upload/default/private/
full");

DocsService service = new DocsService("Pustak Portal");
service.setUserCredentials(gmail_user, gmail_pass);

MediaFileSource mediaFile = new
MediaFileSource(file,DocumentListEntry.MediaType.fromFileName

(file.getName()).
getMimeType());

// Fetch the uploader for the file
ResumableGDataFileUploader uploader = new

ResumableGDataFileUploader(createUploadUrl, mediaFile,
service,

DEFAULT_CHUNK_SIZE, executor, listener,
PROGRESS_UPDATE_INTERVAL);

Document Services: Google Docs 197

// attach the listener to the uploader
listener.listenTo(uploader);
// Start the upload
uploader.start();
while (!listener.isDone()) {

try {
Thread.sleep(100);

} catch (InterruptedException ie) {
listener.printResults();
throw ie; // rethrow

}
}

Sharing the Document with a Mailing List
Finally, consider a more complex example that uses a delegate to login to Google
Docs (class GDataServiceDelegate) and associates write permission to a Google
Groups mailing list (SHARING_GROUP_NAME). The Java code for the same follows,
with the important methods highlighted in bold. The ACLFeed class (Access Con-
trol List [34]) is used to add a new entry and set the right scope and role for the
group.

private void shareUploadedDocumentWithGroup() {
try {

GDataServiceDelegate delegate = new GDataServiceDelegate(
GDataConstants.APPLICATION_NAME);

delegate.login(username, password);
DocumentListFeed resultFeed = delegate.getDocsListFeed
("documents");
List<DocumentListEntry> listEntries = resultFeed.getEntries();
DocumentListEntry entry = null;
if (listEntries.size() > 0)

entry = listEntries.get(0); //firstentry
else

return;

AclFeed aclFeed = delegate.getAclFeed(entry.getResourceId());
for (AclEntry aclEntry : aclFeed.getEntries()) {

AclScope scope = new AclScope(AclScope.Type.GROUP,
SHARING_GROUP_NAME);
aclEntry.setScope(scope);
aclEntry.setRole(new AclRole("writer"));
aclEntry = aclEntry.update();

printMessage(new String[] { aclEntry + ","
+ aclEntry.getScope().getValue() + " ("
+ aclEntry.getScope().getType() + ") : "
+ aclEntry.getRole().getValue() });

}
printMessage(new String[] {"Your document has been shared"});

} catch (Exception e) {e.printStackTrace();}
}

198 CHAPTER 4 Software as a Service

Embedding Google Docs in Other HTML Pages
Consider a scenario where Pustak Portal pages need to embed Google Docs;
i.e., clicking on a link would display a document that is actually stored in
Google Docs. Such a situation may arise if Pustak Portal decides to use Google
Docs as a back-end store. It is possible for Pustak Portal to use the same APIs
described earlier to upload documents to Google Docs and use Google Docs as
a repository to store Pustak documents. The problem is that if a user of Pustak
Portal wants to open a file, and that file takes the user to the Google Docs Ser-
vice with user login just to view the document there, then the experience of
using Pustak Portal is broken. So, is it possible to stay on Pustak Portal, but
comfortably use Google Docs at the back-end? This use case is also elegantly
supported by Google Docs.

In order to embed a Google Docs document into another HTML file, the unique
URL of the document to be inserted is needed. To get this unique URL, the file
needs to be published as a web page. For this, on Google Docs web page, click on
"Share" and select "Publish As Webpage". A window as in Figure 4.17 will become
visible, which not only shows the public URL, but also displays HTML code
similar to the following, which should be inserted into Pustak Portal.

FIGURE 4.17

Publishing a document as a web page.

Document Services: Google Docs 199

<iframe src="https://docs.google.com/document/pub?id=1ayCJGX8b9YEwiya
7K17eEhteiDMv
1Xb JUuzcWuHF4&embedded=true"></iframe>

In addition to being able to retrieve documents by name, Google Docs also has
APIs to search the list of documents [35]. The APIs allow search not only by a
text string, but also by attributes of the file such as the type of the file and when
it was last accessed. It is also possible to extract text from images and translate
documents from one language to another [36].

Google Docs is a simple document management SaaS application that has
been designed to enable uploading and sharing of documents using a cloud ser-
vice as a persistent repository of information. Like all SaaS applications, all the
features of Google Docs can be accessed using a portal. Additionally, the develo-
per APIs enable the usage of this cloud application from within other applications.
There are many such useful features provided by Google Docs that are helpful for
collaborative tasks, such as writing this book! For full features of the Google
Docs both through portal and API, the reader is referred to Google Docs [37] and
Google Documents List Data API [38], respectively. As seen, even simple upload
functionality is nontrivial to implement an API in such a way that it is resilient to
disconnections in the network. Finally, the section showed how one can use the
features of this SaaS in the running Pustak Portal example.

SUMMARY

In this chapter, the focus was mainly on the technical aspects of SaaS applications
rather than the business benefits or the marketing hype. However, no SaaS chapter
is complete without talking about the large change in the computing model that
SaaS brings in for a user or an application vendor. The following briefly elabo-
rates on this topic and evaluates the approaches followed in the different case stu-
dies described in this chapter.

Historically, the notion of SaaS existed even before the term “Cloud Computing”
was coined. For example, most of the discussion about SaaS back in 2001 [39] is
relevant even today. The SaaS term then created much interest and awareness of the
benefits of delivering computing as a service over the Internet. There were many
application service providers who turned into SaaS vendors by just hosting their
application on a web portal. However, when the number of users of the application
increased, they soon realized that in addition to providing a new application delivery
model, SaaS also requires quite a few challenges to be solved at the hardware and
platform level to address the scale, multi-tenancy and reliability issues. Thus, the first
real cloud offerings came from companies such as Salesforce, Google and Amazon,
who could be considered as SaaS vendors offering CRM as a service, search as a ser-
vice and bookstore as a service, respectively. In order to be successful, these vendors
were forced to develop technologies that would allow their services to scale to very

200 CHAPTER 4 Software as a Service

large sizes quickly, as well as to support multiple customers on their infrastructure
while still maintaining isolation (multi-tenancy). Thus, the SaaS model eventually
expanded to become the cloud model.

In addition to technology, social computing applications delivered as SaaS
have had a major impact on the Web. As stated in the Introduction, these applica-
tions have driven the evolution of the Web into the digital universe that it is
today. It is likely that a major driving factor in the further evolution of cloud com-
puting will be the generation of increasing user content, and the growing ability of
users to access and modify this content from mobile devices. Additionally, this
rich content will be mined by enterprises so that they can personalize their
responses to users. Metaphorically, one can say that the Internet will change from
being a passive entity (like the ocean which is unaware of the fishes swimming in
it) to being an intelligent cloud which is aware of the users who inhabit it.

From an application delivery perspective, SaaS enables the end user view of
the vision of cloud computing, where applications are no longer installed on a
local machine but are available on the Internet. For customers, the advantages of
SaaS include the ability to focus on using the application rather than having to
spend effort in installing and maintaining it. For small businesses, SaaS makes the
sophisticated enterprise applications used by larger enterprises affordable. For
medium and large businesses, as stated in the Introduction, it is necessary to con-
duct a financial study to identify cost-saving opportunities between application
delivery via SaaS versus deployment of a private cloud. There are also multiple
benefits that application vendors see from the SaaS model. Rapid time to market
of any new application without having to set up distribution channels or service
channels to ensure that critical bug fixes reach their users is a great value, particu-
larly to startups.

Technically speaking, unlike PaaS, SaaS systems are very diverse with differ-
ent levels of usage of cloud technology, reflecting the diversity of possible appli-
cations. Vendors can deliver a novel application experience, or deliver a single
but most used feature to multiple users (such as document upload and sharing as
in Google Docs), or deliver a common application that can be customized to dif-
ferent business scenarios (as seen in Salesforce), or provide a platform to create
newer applications around a particular domain (social computing). In each of
these examples, the extent of configurability of the application and the flexibility
provided by the system to different users largely varies. It is interesting to analyze
these differences further.

In SalesForce.com, users were not only able to use the portal interface to
tweak the look and feel but also could write their own programs to use the plat-
form components of Salesforce to develop new applications. To provide the
needed flexibility and configurability for developing sophisticated applications,
Salesforce evolved into Force.com, which is a PaaS, where the user has access to
individual application components (the database, the logic, workflow) and can
develop applications even for other domains (not restricted to CRM). So, if a
SaaS application is intended to provide different feature sets to different users,

Summary 201

http://SalesForce.com
http://Force.com

or expose underlying configurable elements to the user, a platform centric
approach would be the right thing to do (though only limited functionality of the
platform may eventually be exposed to the user). However, exposing the PaaS to
users may not always be necessary, especially when the SaaS application itself
can be used by multiple users without much special customization – as we saw in
the section Google Docs.

The Google Docs example produced some additional insights. Though this
SaaS application can be considered as a simple portal which enables hosting, shar-
ing and viewing of documents, the extra features to support interoperability and
reliability are interesting. The Google APIs can be used to support client-side
applications that can use the Cloud as a persistence store and if needed as a docu-
ment sharing and distribution mechanism, enabling a whole new class of applica-
tions to be developed. An important aspect of this SaaS use case is that extra care
was taken to ensure reliability of the dependent applications. Given that the access
to any SaaS application requires network connection, and given that this network
is likely to break, the upload APIs had special features to ensure session manage-
ment across disconnections. Another such feature in Salesforce.com is the ability
to bulk load data [12, 40]. Incorporating such features to compensate for any gaps
or limitations due to cloud-hosted application will be critical to the success of any
SaaS application, as exemplified by the several debates about superiority of
Google Doc versus Microsoft Office.

Though each SaaS application is focused on a specific domain and enables users
to customize or develop newer applications in that specific domain, there are many
opportunities to combine multiple SaaS applications and make it much simpler for
the end user. For example, FaceConnector is a combination of Salesforce.com and
Facebook – a mashup that pulls Facebook profile and friend information into a Sales-
force CRM application [41]. Similarly, use of Salesforce and Google Docs together
as an integrated solution claims to make it possible to manage an entire office in the
Web [42], and integration between Amazon Web Services and Facebook allows
development of applications that leverage Amazon together with Salesforce.com
[43]. SaaS therefore forms a very important aspect of Cloud Computing.

References
[1] SalesForce.com. http://www.salesforce.com [accessed October 2011].
[2] https://na3.salesforce.com/help/doc/user_ed.jsp?loc=help [accessed March 2011].
[3] Creating Workflow Rules. https://login.salesforce.com/help/doc/en/creating_workflow_

rules.htm [accessed October 2011].
[4] SugarCRM. http://www.sugarcrm.com/crm/ [accessed October 2011].
[5] White Paper. http://www.salesforce.com/ap/form/sem/why_salesforce_ondemand.jsp?

d=70130000000EN1GandDCMP=KNC-Googleandkeyword=sugar%20CRMandaduse-
d=1574542173andgclid=CNfqoLK2uaQCFc5R6wod_R3TbQ [accessed March 2011].

[6] Force.com Web Services API Developer’s Guide. http://www.salesforce.com/us/
developer/docs/api/index.htm [accessed 08.10.11].

202 CHAPTER 4 Software as a Service

http://Salesforce.com
http://Salesforce.com
http://Salesforce.com
http://SalesForce.com
http://www.salesforce.com
https://na3.salesforce.com/help/doc/user_ed.jsp?loc=help
https://login.salesforce.com/help/doc/en/creating_workflow_rules.htm
https://login.salesforce.com/help/doc/en/creating_workflow_rules.htm
http://www.sugarcrm.com/crm/
http://www.salesforce.com/ap/form/sem/why_salesforce_ondemand.jsp?d=70130000000EN1GandDCMP=KNC-Googleandkeyword=sugar%20CRMandadused=1574542173andgclid=CNfqoLK2uaQCFc5R6wod_R3TbQ
http://www.salesforce.com/ap/form/sem/why_salesforce_ondemand.jsp?d=70130000000EN1GandDCMP=KNC-Googleandkeyword=sugar%20CRMandadused=1574542173andgclid=CNfqoLK2uaQCFc5R6wod_R3TbQ
http://www.salesforce.com/ap/form/sem/why_salesforce_ondemand.jsp?d=70130000000EN1GandDCMP=KNC-Googleandkeyword=sugar%20CRMandadused=1574542173andgclid=CNfqoLK2uaQCFc5R6wod_R3TbQ
http://Force.com
http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api/index.htm

[7] Salesforce Apex Language Reference. https://docs.google.com/viewer?url=http://www
.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_reference.pdf
[accessed October 2011].

[8] A Beginner’s Guide to Delphi Database Programming. http://delphi.about.com/od/
database/a/databasecourse.htm [accessed October 2011].

[9] A Comprehensive Look at the World’s Premier Cloud-Computing Platform. http://
www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_
040709_WEB.pdf [accessed October 2011].

[10] Force.com Web Service Connector (WSC). http://code.google.com/p/sfdc-wsc/wiki/
GettingStarted [accessed October 2011].

[11] Salesforce API Reference. http://www.salesforce.com/us/developer/docs/api/index_
Left.htm# [accessed October 2011].

[12] Bulk API Developer’s Guide. https://docs.google.com/viewer?url=http://www
.salesforce.com/us/developer/docs/api_asynchpre/api_bulk.pdf [accessed October
2011].

[13] Performance tips by Simon Fell. http://sforce.blogs.com/sforce/2005/04/performance_
tip.html [accessed October 2011].

[14] http://blog.sforce.com/sforce/2005/05/sforce_performa.html [accessed 08.10.11].
[15] http://blog.sforce.com/sforce/2009/08/partitioning-your-data-with-divisions.html

[accessed 08.10.11].
[16] http://wiki.developerforce.com/index.php/Apex_Code:_The_World’s_First_On-

Demand_Programming_Language [accessed 08.10.11].
[17] DeveloperForce Website. http://wiki.developerforce.com/index.php/Force.com_IDE_

Installation_for_Eclipse_3.3.x [accessed October 2011].
[18] Apex Code: The World’s First On-Demand Programming Language. http://wiki.

developerforce.com/images/7/7e/Apex_Code_WP.pdf [accessed October 2011].
[19] Salesforce Object Query Language (SOQL). http://www.salesforce.com/us/developer/

docs/api/index_Left.htm#CSHID=sforce_api_calls_soql.htm|StartTopic=Content%
2Fsforce_api_calls_soql.htm [accessed October 2011].

[20] Lawson M. Berners-Lee on the read/write web. http://news.bbc.co.uk/2/hi/technology/
4132752.stm; 2005 [accessed 03.10.10].

[21] Eldon E. Facebook: 300 Million Monthly Active Users, “Free Cash Flow Positive”.
http://www.insidefacebook.com/2009/09/15/facebook-reaches-300-million-monthly-
active-users/; 2009 [accessed 03.10.10].

[22] Voss, J. Measuring Wikipedia. In: Proceedings of the ISSI 2005. Stockholm, 2005.
[23] O’Reilly T. What is web 2.0: Design patterns and business models for the next generation

of software. http://oreilly.com/web2/archive/what-is-web-20.html#mememap; 2005
[accessed 03.10.10].

[24] Baker C. My Map. http://christopherbaker.net/projects/mymap; [accessed 03.10.10].
[25] Graph API. http://developers.facebook.com/docs/reference/api/ [accessed 08.10.11].
[26] Picasa Web Albums Data API. http://code.google.com/apis/picasaweb/overview.html

[accessed 08.10.11].
[27] Twitter developers. https://dev.twitter.com/ [accessed 08.10.11].
[28] Streaming API. http://dev.twitter.com/pages/streaming_api [accessed October 2011].
[29] CURL. http://curl.haxx.se/docs/ [accessed 08.10.11].
[30] OpenSocial. http://code.google.com/apis/opensocial/ [accessed 08.10.11].
[31] Segaran T. Programming collective intelligence: building smart web 2.0 applications,

O’Reilly Media; 2007. ISBN-13: 978-0596529321.

References 203

https://docs.google.com/viewer?url=http://www.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_reference.pdf
https://docs.google.com/viewer?url=http://www.salesforce.com/us/developer/docs/apexcode/salesforce_apex_language_reference.pdf
http://delphi.about.com/od/database/a/databasecourse.htm
http://delphi.about.com/od/database/a/databasecourse.htm
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_040709_WEB.pdf
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_040709_WEB.pdf
http://www.developerforce.com/media/Forcedotcom_Whitepaper/WP_Forcedotcom-InDepth_040709_WEB.pdf
http://Force.com
http://code.google.com/p/sfdc-wsc/wiki/GettingStarted
http://code.google.com/p/sfdc-wsc/wiki/GettingStarted
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#
http://sforce.blogs.com/sforce/2005/04/performance_tip.html
http://sforce.blogs.com/sforce/2005/04/performance_tip.html
http://blog.sforce.com/sforce/2005/05/sforce_performa.html
http://blog.sforce.com/sforce/2009/08/partitioning-your-data-with-divisions.html
http://wiki.developerforce.com/index.php/Apex_Code:_The_World's_First_On-Demand_Programming_Language
http://wiki.developerforce.com/index.php/Apex_Code:_The_World's_First_On-Demand_Programming_Language
http://wiki.developerforce.com/index.php/Force.com_IDE_Installation_for_Eclipse_3.3.x
http://wiki.developerforce.com/index.php/Force.com_IDE_Installation_for_Eclipse_3.3.x
http://wiki.developerforce.com/images/7/7e/Apex_Code_WP.pdf
http://wiki.developerforce.com/images/7/7e/Apex_Code_WP.pdf
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#CSHID=sforce_api_calls_soql.htm|StartTopic=Content%2Fsforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#CSHID=sforce_api_calls_soql.htm|StartTopic=Content%2Fsforce_api_calls_soql.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#CSHID=sforce_api_calls_soql.htm|StartTopic=Content%2Fsforce_api_calls_soql.htm
http://news.bbc.co.uk/2/hi/technology/4132752.stm
http://news.bbc.co.uk/2/hi/technology/4132752.stm
http://www.insidefacebook.com/2009/09/15/facebook-reaches-300-million-monthly-active-users/
http://www.insidefacebook.com/2009/09/15/facebook-reaches-300-million-monthly-active-users/
http://oreilly.com/web2/archive/what-is-web-20.html#mememap
http://christopherbaker.net/projects/mymap
http://developers.facebook.com/docs/reference/api/
http://code.google.com/apis/picasaweb/overview.html
https://dev.twitter.com/
http://dev.twitter.com/pages/streaming_api
http://curl.haxx.se/docs/
http://code.google.com/apis/opensocial/

[32] Wasserman S, Faust K. Social network analysis: methods and applications. Cambridge
University Press; 1994. ISBN-13: 978-0521387071

[33] How to do stuff with Google Docs. http://www.labnol.org/internet/office/google-docs-
guide-tutorial/4999/ [accessed 08.10.11].

[34] http://code.google.com/apis/documents/docs/3.0/developers_guide_java.html#Access
ControlLists [accessed 08.10.11].

[35] http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#
SearchingDocs [accessed 08.10.11].

[36] Translate a document, https://docs.google.com/support/bin/answer.py?answer=187189
[accessed October 2011].

[37] Google Docs homepage. http://docs.google.com [accessed 08.10.11].
[38] http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#

SpecialFeatures [accessed 08.10.11].
[39] Software As A Service. A Strategic Backgrounder, Software & Information Industry

Associatio, SIIA 2001, http://www.siia.net/estore/ssb-01.pdf [accessed October 2011].
[40] Got (lots of) Data? New Bulk API for High Volume Data. https://docs.google.com/

viewer?url=http://www.salesforce.com/dreamforce/DF09/pdfs/ADVD009_Ferguson.pdf
[accessed 08.10.11].

[41] http://sites.force.com/appexchange/listingDetail?listingId=a0330000003z9bdAAA
[accessed 08.10.11].

[42] http://www.google.com/press/annc/20080414_salesforce_google_apps.html; 2008
[accessed 08.10.11].

[43] Force.com Toolkit for Amazon Web Services. http://aws.amazon.com/solutions/global-
solution-providers/salesforce/ [accessed October 2011].

204 CHAPTER 4 Software as a Service

http://www.labnol.org/internet/office/google-docs-guide-tutorial/4999/
http://www.labnol.org/internet/office/google-docs-guide-tutorial/4999/
http://code.google.com/apis/documents/docs/3.0/developers_guide_java.html#AccessControlLists
http://code.google.com/apis/documents/docs/3.0/developers_guide_java.html#AccessControlLists
http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#SearchingDocs
http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#SearchingDocs
https://docs.google.com/support/bin/answer.py?answer=187189
http://docs.google.com
http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#SpecialFeatures
http://code.google.com/apis/documents/docs/3.0/developers_guide_protocol.html#SpecialFeatures
http://www.siia.net/estore/ssb-01.pdf
http://sites.force.com/appexchange/listingDetail?listingId=a0330000003z9bdAAA
http://www.google.com/press/annc/20080414_salesforce_google_apps.html
http://Force.com
http://aws.amazon.com/solutions/global-solution-providers/salesforce/
http://aws.amazon.com/solutions/global-solution-providers/salesforce/

CHAPTER

5Paradigms for Developing
Cloud Applications

INFORMATION IN THIS CHAPTER:

• Scalable Data Storage Techniques

• MapReduce Revisited

• Rich Internet Applications

INTRODUCTION

New platforms such as those studied as Platform as a Service in Chapter 3 enable
developers to create efficient, scalable applications to be hosted on the Web. How-
ever, to effectively utilize these platforms, the developer who is just moving into
developing cloud applications needs to learn new design methodologies for the
application. This chapter describes these new methodologies and paradigms at a
fundamental level with sufficient theoretical backing to enable the developer to
consciously make the right choices for the application design.

The next section describes new concepts and techniques for handling large scale
data storage during application execution. The use of both relational databases and
NoSQL data stores to store cloud-hosted data is explained in detail. The Hadoop plat-
form, described in Chapter 3, brings in a new notion of MapReduce programming
that again requires rethinking on the application design. The next section explains the
fundamental concepts of the MapReduce paradigm and guides the user in framing the
problem statement as a MapReduce problem. This is particularly needed for so-called
“Big Data” applications. The subsequent sections describe ways of developing rich
client applications using client-side programming as well as visual programming with
mashups for customized client interfaces for cloud-hosted applications.

SCALABLE DATA STORAGE TECHNIQUES
As stated in Chapter 1, cloud applications may have data storage requirements that
exceed those of enterprise applications. For example, in 2009, Facebook required
1.5PB of storage for its photos, with a weekly growth rate of 25TB [1]. High
capacities of this kind far exceed the needs of enterprise storage systems. In addi-
tion to high capacity, high throughput may also be a reason why conventional

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00005-6
© 2012 Elsevier, Inc. All rights reserved.

205

http://dx.doi.org/10.1016/B978-1-59749-725-1.00005-6

technologies cannot scale to the cloud. Netlog, a European social networking site,
had 40 million active members, who generated 3000+ queries per second during
peak time [2]. Additionally, the workload tended to be write-heavy, with a read-
write ratio of 1.4:1. Similarly, a recent news report states that Google serves
2,000,000 requests per minute [3].

These examples show that conventional storage techniques may not be ade-
quate for cloud applications. In this section, the question of how to scale storage
systems to cloud-scale is discussed. The basic technique is to partition and repli-
cate the data over multiple independent storage systems. The word independent is
emphasized, since it is well-known that databases can be partitioned into mutually
dependent sub-databases that are automatically synchronized for reasons of perfor-
mance and availability. Partitioning and replication increases the overall through-
put of the system, since the total throughput of the combined system is the
aggregate of the individual storage systems.

The other technology for scaling storage described in this section is known by
the name NoSQL.1 NoSQL was developed as a reaction to the perception that
conventional databases, focused on the need to ensure data integrity for enterprise
applications, were too rigid to scale to cloud levels. As an example, conventional
databases enforce a schema on the data being stored, and changing the schema is
not easy. However, changing the schema may be a necessity in a rapidly changing
environment like the cloud. For example, considering the Pustak Portal, it may be
desired to capture additional information about the books being sold so as to
enable the usage of more sophisticated recommendation algorithms requiring new
columns to be added to the table. NoSQL storage systems provide more flexibility
and simplicity compared to relational databases. The disadvantage, however, is
greater application complexity. NoSQL systems, for example, do not enforce a
rigid schema. The trade-off is that applications have to be written to deal with
data records of varying formats (schema).

Partitioning and replication also increase the storage capacity of a storage sys-
tem by reducing the amount of data that needs to be stored in each partition.
However, this creates synchronization and consistency problems, and discussion
of this aspect is deferred to Chapter 6.

The rest of this section is organized as follows: In the sub-section Example:
Pustak Portal Data, some example data that is typical of a publishing portal is
presented. The next section Scaling Storage: Partitioning describes how to scale
storage systems by partitioning the example data discussed previously. The discus-
sion is in the context of relational databases, but the same concepts apply to parti-
tioning NoSQL systems as well. The next section describes NoSQL systems of
the key-value store type. The following section describes the other type of
NoSQL systems, known as XML document databases.

1The acronym NoSQL originally stood for No SQL. However, as some of the advantages of
relational databases for the cloud became better known, NoSQL was re-interpreted to mean Not
Only SQL.

206 CHAPTER 5 Paradigms for Developing Cloud Applications

Example: Pustak Portal Data
For illustrating the basic techniques of cloud storage and demonstrating the trade-
offs, the following example is used. Assume that in Pustak Portal, the transactions
on the books that have been sold have to be stored, as well as customer profiles
and the current inventory of each book. The format of the data is shown in the
entity-relationship diagram of Figure 5.1.

Table 5.1 shows the customer data that needs to be stored as well as the data on
book sales. The customer data consists of a Customer_Id that uniquely identifies
the customer, and Name and Address fields that specify the name and address of the
customer, respectively. The Total Bought data contains the total amount of pur-
chases by this customer from Pustak Portal. This data can be used, for example, to
compute a customer membership level (e.g., Gold or Silver) that can be used to
compute a discount or other membership benefits. Similarly, the inventory table
(Table 5.2) contains the Book_Id and the Warehouse_Id, which together form the
primary key, as well as Inventory, which is the number of copies of the book in
stock at the warehouse. The sales data (Table 5.3) consists of a Transaction_Id
that uniquely identifies the transaction, Customer_Id and Book_Id that uniquely
identify the customer and book, respectively, together with the Sale_Price.

Customer Id

Name

Address

Total
bought

Book Id

Book
inventory

Inventory Sale price

Book Id

Customer Id

Transaction Id

Buyer of Book sales

Warehouse Id

Customer n1

FIGURE 5.1

Example Pustak Portal data.

Table 5.1 Pustak Portal Customer Table

Customer_Id Name Address Total_Bought

38876 Smith, John 15, Park Avenue, … $5,665

Scalable Data Storage Techniques 207

We assume the sale price could vary because of discounts, for example, so it is
necessary to store it in the book sale data. Finally, there is a one-to-many relation-
ship between the customer data and the book sale data since a customer could have
bought many books, but each sale is from only one customer. This database will be
used as a running example in the rest of this chapter describing storage techniques.

Scaling Storage: Partitioning
Due to their widespread use and importance in enterprises, relational database
technology has reached a high level of performance and reliability. Therefore,
they form a natural choice for cloud storage. As of writing, many cloud applications
were using MySQL for storing data. These include Wikimedia [4], Google [5], and
Flickr [6]. However, databases in the terabyte range are currently considered very
large [7]. As stated earlier, orders of magnitude larger storage are needed by cloud
applications such as Facebook. So, traditional database deployments are not
adequate for this purpose.

To scale both the throughput and the maximum size of the data that can be
stored beyond the limits of traditional database deployments, it is possible to parti-
tion the data, and store each partition in its own database. For scaling the through-
put only, it is possible to use replication. The rest of this section first describes
partitioning and replication techniques used for scaling relational databases. Subse-
quently, these techniques are illustrated with the example described in the pre-
vious section. Finally, the disadvantages of a partitioning scheme are further
detailed in the final subsection.

Recall that relational databases shown in Tables 5.1 to 5.3 depicted a simple
way of storing the Pustak Portal data in relational tables. The first possible method
is to store different tables in different databases (as in multidatabase systems). The
second approach is to partition the data within a single table onto different data-
bases. Further, two natural ways to partition the data from within a table are:

i. to store different rows in different databases and
ii. to store different columns in different databases.

Table 5.2 Pustak Portal Inventory Table

Book_Id Warehouse_Id Inventory

1558604308 776 35

Table 5.3 Pustak Portal Transaction Table

Transaction_Id Customer_Id Book_Id Sale_Price

775509987 38876 99420202 $11.95

208 CHAPTER 5 Paradigms for Developing Cloud Applications

The three techniques are discussed next. Since storing different columns in dif-
ferent databases is more common in NoSQL databases, it is discussed in the
NoSQL sections.

Functional Decomposition
As stated previously, one technique for partitioning the data to be stored is to
store different tables in different databases, leading to the storage of the data in a
multidatabase system (MDBS) [8]. An example of a MDBS for a portal such as
Pustak Portal is shown in Figure 5.2 [9]. Here, the data for the portal has been
split into four databases. The Session Management database stores user informa-
tion, such as the user profile, userid, and password. The eCommerce database
stores customer transactions. The Content Management database stores informa-
tion such as the goods to be sold, their photographs, and prices. The Data Ware-
housing database analyzes the transaction data and draws inferences about
customer buying patterns. It is to be noted that these databases are not indepen-
dent; for example, the Data Warehousing database periodically has to draw data
from the eCommerce database. It can also be seen that since the number of func-
tions into which a service is decomposed is in the order of 10s, this technique
may not produce scaling beyond 10, which by itself would not be sufficient for a
cloud-scale architecture.

Session management

Database

eCommerce

Database

Application servers

Database

Data warehouse

Database

Content management

FIGURE 5.2

Functional decomposition of data.

Scalable Data Storage Techniques 209

Master-Slave Replication
To increase the throughput of transactions from the database, it is possible to have
multiple copies of the database. A common replication method is master-slave
replication, depicted in Figure 5.3 [9]. The master and slave databases are repli-
cas of each other. All writes go to the master and the master keeps the slaves in
sync. However, reads can be distributed to any database. Since this configuration
distributes the reads among multiple databases, it is a good technology for read-
intensive workloads. For write-intensive workloads, it is possible to have multiple
masters, but then ensuring consistency if multiple processes update different repli-
cas simultaneously is a complex problem. Additionally, time to write increases,
due to the necessity of writing to all masters and the synchronization overhead
between the masters rapidly becomes a limiting overhead.

Row Partitioning or Sharding
In cloud technology, sharding is used to refer to the technique of partitioning a
table among multiple independent databases by row [10]. However, partitioning of
data by row in relational databases is not new, and is referred to as horizontal
partitioning in parallel database technology. The distinction between sharding
and horizontal partitioning is that horizontal partitioning is done transparently to
the application by the database, whereas sharding is explicit partitioning done by
the application. However, the two techniques have started converging, since
traditional database vendors have started offering support for more sophisticated
partitioning strategies [11]. Since sharding is similar to horizontal partitioning, we
first discuss different horizontal partitioning techniques. It can be seen that a good
sharding technique depends upon both the organization of the data and the type of
queries expected. A list of different sharding techniques follows.

Round-robin method: DeWitt et al. [12] describe three basic methods for hor-
izontal partitioning. The round-robin method distributes the rows in a round-
robin fashion over the different databases. In the example, we could partition the
transaction table into multiple databases so that the first transaction is stored in
the first database, the second in the second database, and so on.

The advantage of round-robin partitioning is its simplicity. However, it also
suffers from the disadvantage of losing associations (i.e., related records are not
likely to be stored in the same database). For example, suppose customers can log

Master

SlaveSlave

FIGURE 5.3

Master-slave replication.

210 CHAPTER 5 Paradigms for Developing Cloud Applications

on to the Pustak Portal and ask for a list of their recent orders in order to check on
the status. Under round-robin partitioning, it is likely that these orders would be
stored in different databases, so a query to find recent orders would have to query
all databases.

NOTE
Sharding Techniques
• Round-robin by sharding attribute(s)
• Hash partitioning: hash on sharding attribute(s) to get the shard where record is stored
• Range partitioning: each shard stores a subrange of the sharding attribute(s)
• Directory-based: lookup sharding attribute(s) in a directory to find shard. Use memory

cache to store directory for efficient lookup.
• Round-robin sharding loses data associations
• Range partitioning may be susceptible to load imbalance unless ranges are chosen

carefully

Hash partitioning: Two techniques that do not suffer from the disadvantage
of losing record associations are hash partitioning and range partitioning (see
Figure 5.4.). In hash partitioning, the value of a selected attribute is hashed to

Hash partitioning

Hash
(Cust_Id)

Select
partition

D
B

2

Range table
or list

775509987

99420202

38876

$11.95

775510009

99420202

47765

$11.95

775509997

99202402

38876

$13.95

Lookup
(Cust_Id)

775509987

99420202

38876

$11.95

775510009

99420202

47765

$11.95

775509997

99202402

38876

$13.95

Range/list partitioning

D
B

1

D
B

2

D
B

1

Select
partition

FIGURE 5.4

Sharding methods.

Scalable Data Storage Techniques 211

find the database into which the tuple should be stored. If queries are frequently
made on an attribute (such as Customer_Id), then associations can be preserved
by using this attribute as the attribute that is hashed, so that records with the same
value of this attribute can be found in the same database. This is illustrated in
Figure 5.4 where transaction records with Customer_Id 38876 all hash to DB1.

Range partitioning: The range partitioning technique stores records with
“similar” attributes in the same database. For example, the range of Customer_Id
could be partitioned between different databases. Again, if the attributes chosen
for grouping are those on which queries are frequently made, record association is
preserved and it is not necessary to merge results from different databases.

Some web sites use list partitioning, which is a generalization of range partition-
ing [2]. Instead of partitioning on ranges of attributes of the record, each combination
of attributes is looked up in a directory to find the database partition to which it
belongs. For example, if Customer_Id is the partitioning attribute, it is looked up in a
directory to find the database partition of interest (see Figure 5.4 which illustrates
both range and list partitioning). To avoid performance bottlenecks, a memory-cached
database can be used, since the amount of data is likely to be small (for example, if
there are 20,000,000 customers, the database may be of the order of a few MB).

Range partitioning can be susceptible to load imbalance, unless the partitioning
is chosen carefully. It is possible to choose the partitions so that there is an imbal-
ance in the amount of data stored in the partitions (data skew) or in the execution
of queries across partitions (execution skew). These problems are less likely in
round robin and hash partitioning, since they tend to uniformly distribute the data
over the partitions.

Case Study: Partitioning in Netlog
To illustrate these principles, this subsection describes sharding in Netlog [2]. The
Netlog social networking site contains three databases – a database of users, a
database of friendships between users, and a database of messages posted by
users. The user database contains details about users such as their photos and
videos. Initially, all these databases were stored in the same database server. As
the I/O required grew beyond the capacity of a single database server, Netlog
tried the following steps for scaling the I/O requirements.

Master-slave: The first scaling technology implemented for Netlog was mas-
ter-slave replication (shown in Figure 5.3). Since the Netlog application has a
high write/read ratio (1.4:1), the master eventually becomes a bottleneck.

Vertical partitioning: Since the writes to the user database were a bottleneck,
the user database was partitioned vertically by putting independent columns on
independent servers (e.g., photo details were stored in a separate database). How-
ever, the friendships and messages databases then became a bottleneck

Functional decomposition: The three databases – users, friendships, and
messages – were put on separate database servers (the configuration being similar to
the configuration shown in Figure 5.2). However, eventually with growth in load, the
friendships and messages databases again became a bottleneck.

212 CHAPTER 5 Paradigms for Developing Cloud Applications

Master-slave: Initially, only the user database was set up in a master-slave
configuration. Subsequently, the friendships and messages table were set up in a
master-slave configuration as well, to increase the throughput. However, the mes-
sages database had a high write bandwidth and became a bottleneck.

Sharding: Some of the databases with high write traffic (messages database)
were sharded on userid; i.e., data for a user were stored in database x where x is
userid modulo the number of databases (see Figure 5.4). This is a hash sharding
where the hash is simply the userid modulo the number of databases.

Example: Partitioning the Pustak Portal Data
To partition the Pustak Portal data shown in the previous case study, a combina-
tion of functional decomposition and sharding is used. The alternatives are dis-
cussed shortly, together with code fragments for implementing these alternatives.
From the discussion that follows, it should be clear that there is no unique “best”
partitioning alternative, and that the alternative chosen is strongly dependent upon
the application (i.e., the queries that would be made against the database).

First, functional decomposition can be used to store the customer data, the
transaction data, and the book inventory data in separate databases, and then shard
each database separately (similar to the configuration in Figure 5.2). A simple
scheme for further scaling is to shard the customer data and transaction data on
Customer_Id (by, for example, hashing the Customer_Id). Customer_Id is selected
as the sharding attribute because the assumption is that most of the online transac-
tions would be related to individual customers (such as finding the status of a
recent order, or updating the customer’s profile). Other transactions (e.g., finding
total sales of a book) are offline transactions where speed is not essential; there-
fore minimizing the response time for such a transaction is not essential (though
the query should run efficiently). In that case, as stated previously, sharding the
transaction database on the Customer_Id retains associativity, so that queries such
as finding the outstanding orders for a customer need not span multiple servers,
and hence reduces response time.

Before this sharding method can be implemented, one problem has to be
solved. This problem is: sometimes, the Transaction_Id may be given, and since
the transaction tables are sharded on Customer_Id,it is necessary to find the
Customer_Id from the Transaction_Id. For example, a book may have been
shipped to the customer, and it may be desired to notify the customer via an
email that the book has shipped. The software that tracks the status of the order
may send a message to an email module with the Transaction_Id of the order
that just shipped. It is not possible to look up the transaction table to find the
Customer_Id, since the transaction table is sharded on Customer_Id, so the shard
to which the query is to be sent is unknown! This problem can be solved by mod-
ifying the transaction table as shown in Table 5.4. Here, the Transaction_Id has
been decomposed into a pair (Transaction_Num, Customer_Id) which form a
composite key for the table. The Transaction_Num can be some number which
uniquely identifies the transaction for this customer, such as the seconds since a

Scalable Data Storage Techniques 213

particular date or a randomly generated number. Thus it can be seen that the
sharding strategy may have an impact on the tables chosen.

CODE TO INITIALIZE CONNECTION TO TRANSACTION DATABASE SHARDS
import java.sql.*
class transDBs {

public static final int NUM_TRANS_SHARD = 10;
String dburl1 = "jdbc:mysql://transDB" //First part of DB URL
String dburl2 = ":3306/db"; //Second part of DB URL
Connection[] transDBConns; // Array of transaction DB connections

/* Return connection to transaction db shard for Customer_id */
public Connection getTransShardConnection (int Customer_id) {

return (transDBConns [Customer_id % NUM_DB]);
}

/* Load JDBC driver */
Class.forName ("com.mysql.jdbc.Driver").newInstance();
/* Initialize transaction DB shard connections */
transDBConns = new Connection [NUM_DB];
for (int i=0; i<NUM_DB; i++) {

String dburl;
/* transDBConns[0] points to jdbc:mysql://transDB0:3036/db */
/* and so on */
dburl = dburl1 + new Integer (i).toString() + dburl2;
try {

transDBConns[i] = DriverManager.getConnection (dburl,
userid, pwd);

} catch (Exception e) {
e.PrintStackTrace();

}
} // for

} //transDBs

The preceding example code can be used to implement sharding in the transac-
tion database. It is assumed that the database is sharded into NUM_TRANS_SHARD
shards. The class transDBs maintains an array transDBConns of connections to
the various database shards. The method getTransShardConnection can be
used to get a connection to the database shard for a customer with a particular
Customer_Id. Queries can then be performed against a shard as given in the next
code sample, which shows how to retrieve all the transactions for a customer
(assuming that the Customer_Id is a secondary index into the transaction table).

Table 5.4 Transaction Table Modified for Sharding

Transaction_Id

Book_Id Sale_PriceTransaction_Num Customer_Id

6732 38876 99420202 $11.95

214 CHAPTER 5 Paradigms for Developing Cloud Applications

The statement starting transDBConn = gets a connection to the shard for a particu-
lar customer, and the subsequent stmt.executeQuery statement executes a query
against the shard.

Executing a Query to a Transaction Database Shard
Connection transDBConn; // Connection to transaction DB shard
Statement stmt; // SQL statement
ResultSet resset;
transDBConn = transDBs.getTransShardConnection (Customer_Id);
stmt = transDBConn.createStatement();
resset = stmt.executeQuery ("SELECT * FROM transTable WHERE custID="
+ new Integer (Customer_Id).toString());

A more sophisticated method can be used if the customer base is geographi-
cally distributed. Assume that we can use the Address field to extract the conti-
nent that the customer lives in, and that Pustak Portal has servers in each
continent. In that case, it may be useful to direct each customer’s queries to a ser-
ver in the continent the customer lives in. This can be achieved by hashing on
both the continent as well as the Customer_Id as sharding attributes. For example,
if the shard number is 3 digits (such as 342), the continent can be used to select
the first digit of the number, and the Customer_Id to select the second two digits.

An intuitive method for sharding the inventory data is to use Book_Id as the
sharding attribute. This would allow querying a single server to find all the ware-
houses in which a book is present, and to direct orders to the nearest warehouse
to the customer. However, this would imply that some customer interactions, such
as checkout, would span multiple shards. This is because when a customer checks
out, the inventory of each book ordered would have to be updated, and this
would generally span multiple servers, since the sharding is by Book_Id.

The need to update multiple servers upon checkout can be avoided by sharding
in the following way. Assume there is a warehouse inventory management system
under which a warehouse would have a very high (say 95%) probability of contain-
ing books wanted by customers who live close to it. Under that assumption, it is
possible to shard by Warehouse_Id. When a customer checks out, there is a very
high probability that all books ordered by the customer are in the nearest ware-
house, so the transaction to update the inventory is very likely to involve only one
server. If the book is not found in the nearest warehouse, the action taken depends
on the inventory management system. For example, if there is a master warehouse
that has copies of all books, the master warehouse can be queried.

Disadvantages of Sharding
As stated earlier, while sharding increases the scaling limits of the database, it
creates additional complexity. Sharding creates additional consistency issues, as
well as makes it difficult to re-shard in case the original sharding method does not
create adequate throughput [13, 14]. More details follow.

Join complexity: When a single database is sharded across multiple servers, it
is no longer simple to do joins, since this join has to be executed across multiple
servers. A common solution to this problem is denormalization, whereby certain

Scalable Data Storage Techniques 215

attributes are duplicated in multiple tables [15]. In the Pustak Portal example, sup-
pose there are discussion forums containing topics that customers can initiate.
When a customer logs in to the portal, consider the question of displaying a list of
replies on all topics initiated by the customer. A common way to do this is to have
a Topics table, which contains a list of topics, together with the userid of the custo-
mer who initiated the topic, and a Replies table, which has a list of replies, and
topic ids. The desired list can be generated by joining the Topics table and the
Replies table on the topic id and customer id. This is illustrated in Figure 5.5,
which shows the case of generating a report for userid 999. From the Topics table,
it can be seen that she is the initiator of topics 106 and 107; from the Replies table
it can be seen that replies 10061 and 10062 are for these topics, and should be
selected. Since the Replies table may be sharded, topics 106 and 107 could be in
different shards, making this a complex operation. One way to handle this is to add
the topic initiator userid (999 in this case) to the Replies table. This makes it possi-
ble to easily generate the report described earlier, but since the tables are no longer
normalized, increases the database size and creates the problem of keeping the
Topics table and Replies table consistent. If there is an inconsistency, it is possible
that a customer may not see replies on topics she has initiated or vice versa.

Data consistency: The previous example is only one of the potential data con-
sistency issues that could arise. Since the tables are split across multiple database
servers, ensuring data consistency becomes the responsibility of the application.

Re-sharding: As the Netlog case study shows, an initial sharding design may not
be sufficient for the throughput needed. In this case, the database may need to be
re-sharded by increasing the number of shards or by using a different partitioning.
This is very complex.

Reliability: Backups or snapshots become more complicated, since all shards
have to be backed up in a synchronized manner to ensure consistency.

Auto-increment key complexity: Implementing auto-incrementing keys (where
each inserted row gets a sequentially numbered key) has to be coordinated across
shards.

Change in Database Schema
During the lifetime of a database deployment, it is not uncommon to have to
re-organize the database. A white paper by Oracle [11] discusses many of the

Topic Id Topic Id Reply

106 999

999

841

263

107

109

108

Initiator Reply Id

10059 76

55

107

106

...

...

...

...

10060

10061

10062

FIGURE 5.5

Denormalization example.

216 CHAPTER 5 Paradigms for Developing Cloud Applications

problems that arise when a database is reorganized, such as changing the schema,
and introducing new indexes. The complexity of these changes increases with
sharding.

Automatic Sharding Support
There are a number of efforts to add automatic sharding to MySQL by the use
of a proxy. In these cases, the proxy sits between the client and the sharded
database. After intercepting requests from the client, the proxy directs the
request to the appropriate shard. Results are consolidated before being returned
to the client. The proxy may also be able to transparently re-shard the database.
Examples of such proxies include Scalebase [16], Spock proxy [17], and
Hibernate Shards [18].

NoSQL Systems: Key-Value Stores
After the previous discussion on scaling relational databases, this section describes
alternatives to relational databases. These alternatives were originally motivated
by the desire to overcome the perceived constraints of relational databases that
prevented scaling [19]. These include greater decentralization leading to greater
reliability (i.e., avoiding the tight synchronization between replicas characteristic
of databases), and a simplified interface compared to SQL. This subsection
describes key-value stores, which simply store key-value pairs, and the only
query interface is to use the key to get the corresponding value. XML document
databases are described in the next section.

The rest of this section describes various well-known key-value stores. It can
be seen that these have certain common features. First, the main API used for
access is storage or retrieval of a value on the basis of a key. Second, the key-
value stores offer automatic scaling by horizontally partitioning the store based on
the value of the key. Thus sharding is an in-built feature of the key-value stores.

HBase
HBase, which is part of the Hadoop project, is one of the important scalable
NoSQL technologies. For example, it is used in Facebook messaging, and handles
about 135 billion messages per month [20]. HBase was selected for many reasons,
including scalability and a simple consistency model [21, 22, 23]. In the follow-
ing, HBase usage is described first, followed by a description of the techniques
used by HBase to scale to cloud levels.

HBase usage: HBase is a key-value store that is an open source implementa-
tion of the ideas in Google’s BigTable [24]. It is part of the Hadoop project, and
as can be seen later in this chapter, is tightly integrated with Hadoop MapReduce
(introduced in chapter 3 and described in detail later in this chapter). HBase can
be considered as a datastore that keeps tables such that each row is indexed by a
key. However, HBase is unlike relational databases, where the columns are the
same for each row (and are specified by the database schema). In HBase, the

Scalable Data Storage Techniques 217

columns in each row can vary. This is achieved as follows: when creating the
row, the value of each column is specified as {column name, value} pairs. The
column name consists of two parts – the column family and the qualifier. The col-
umn family is used for vertical partitioning of the database; recall the discussion
in the section Scaling Storage: Partitioning about vertical partitioning being one
of the partitioning methodologies that can increase scaling of databases. HBase
stores different column families in different files. This is very valuable for perfor-
mance tuning; multiple columns with the same column family are stored in the
same file, and stored or retrieved together. Thus putting related columns in the
same column family improves performance. Additionally, whenever a key is
assigned a value, the old value is not overwritten. Instead, the new value is
appended to the database with a timestamp. Periodically, a compaction process
that deletes old timestamps is run. The number of old versions that should be
retained can be specified.

Figure 5.6 illustrates these concepts. It can be seen that the table has 5 rows.
There are two versions of the row with key value A at times T1 and T2. Row A at
T1 had two columns – CF1:Q1 and CF1:Q3. These are in the same column family.
However, it had only 1 column at time T2. Rows B and C have the same format
as each other but different columns from row A. Row D has the same format as
row A.

To make the concepts behind HBase use clearer, the following shows how
HBase can be used to implement part of the Pustak Portal example given
previously. The code samples in this section show how to insert transactions in
the transaction table, and find transactions for a customer. It is assumed that a
transaction table for holding the Pustak Portal transaction data (see section
Example: Pustak Portal Data) has been created in HBase. The table is assumed
to be named transTable, and it was created with a column family called
transactionData for holding the transaction data. Note that the actual columns,
which contain the transaction data values, have not been specified at the time of
creation.

Row A CF1:Q1 = V1 CF1:Q3 = V6 T1

T2

T3

T4

T5CF1:Q3 = V7

CF1:Q1 = V2

CF2:Q2 = V3

CF2:Q2 = V4

CF1:Q1 = V5

Row A

Row C

Row B

Row D

FIGURE 5.6

HBase data layout.

218 CHAPTER 5 Paradigms for Developing Cloud Applications

Connecting to HBase transaction table
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HTable;
class transTableInterface {

HBaseConfiguration HBaseConfig = new HBaseConfiguration(); // A
HTable transTableConn = new HTable(HBaseConfig,"transTable");//B

}

The code snippet shows how one can connect to the transaction table. It is
assumed that class transTableInterface contains all the procedures for interact-
ing with the transaction table. The variable HBaseConfig is automatically initia-
lized in statement A with the connection parameters for HBase, which have to be
stored in files hbase-site.xml or hbase-default.xml in the CLASSPATH [25].
Statement B stores the connection parameters to the transaction table in
transTableConn.

Inserting a new transaction in HBase transaction table
import org.apache.hadoop.hbase.client.*;

class transTableInterface {
public static insertRow (int transNum, int CustomerId, int BookId,
float salePrice) {

Put row = new Put (BytestoBytes (new Integer (CustomerId).
toString() + "@" + new Integer (transId).toString())); // A
row.add (Bytes.toBytes ("transactionData", Bytes.toBytes (new
Integer (CustomerId).toString()));

…

transTableConn.put (row); // C
}

The preceding sample code shows how to insert a new transaction into the trans-
action table. The method insertRow inserts a new transaction into the table. State-
ment A creates a new row object with the transaction id as a key. Since HBase is a
key-value store, the transaction id has to be encoded into a single key. Here, the
transaction id is encoded into a string of the form <Customer_Id>@<Transaction_
Num>. Statement B adds the column transactionData:BookId to this row with the
value given by BookId. Similar statements are needed to add the salePrice. These
statements are omitted for brevity. Statement C finally inserts the row into the table.
A default timestamp is provided, since there is no timestamp explicitly specified.

The rest of this section describes how to find all the transactions for a custo-
mer. Since HBase does not support secondary indexes, it is not possible to search
the transaction table using the customer id. One possible method would be to
maintain a table of customer ids and transaction ids, look up this table to find all
the transaction ids for a customer, and then look up the transaction table to find
the transactions. This is equivalent to maintaining a secondary index on customer
ids in the application. However, this requires an extra query to lookup the transac-
tion ids. The following is a method that finds the transactions directly from the

Scalable Data Storage Techniques 219

transaction table. A modified version of this technique can be used to maintain
and search a table of transaction ids and customer ids, if so desired.

FINDING ALL TRANSACTIONS FOR A CUSTOMER IN TRANSACTION TABLE
import org.apache.hadoop.hbase.client.*;
class transTableInterface {

public static ResultScanner findCustTrans (int CustomerId) {
Scan CustIdScan = new Scan(); // A
RowFilter CustIdFilter = new RowFilter (CompareOp.EQUAL, new
BinaryPrefixComparator (Bytes.toBytes (Integer (CustomerId).
toString() + "@")); // B
CustIdScan.setFilter(CustIdFilter)

...
return (transTableConn.getScanner (CustIdScan); // C

}

The code snippet Finding All Transactions for a Customer in Transaction Table
gives the sample code for finding all transactions for a customer. The key idea
behind the code snippet is that since transaction ids are of the form <Customer_
Id>@<Transaction_Num>, to find all the transactions for a customer (say 38876),
we merely need to look for transaction ids of the form 38876@xxxx. Additionally,
the reason this query can be executed efficiently is that HBase keeps regions sorted
on keys. Statement A creates a new scanner object. Statement B specifies that
the scan condition is to look for transactions where the row key is equal to
CustomerId@. This is specified by the RowFilter which has two parameters. The
second parameter BinaryPrefixComparator specifies the comparison to be made
(compare the initial part of the row key with the specified string). The first
parameter (CompareOp.EQUAL) specifies that the comparison is to be for equality.
Statement C executes the scan and returns the result. Though this technique is being
used for finding transactions for a customer, a similar technique can be used if it is,
for example, desired to keep a list of customers and books they have purchased or
for maintaining a secondary index. This can be achieved by keeping a table with a
key of the form <Customer_Id>@<Book_Id>.

HBase scaling: HBase provides auto scaling by horizontally partitioning tables
based upon the key. A partition of a table is called a region, and an HBase server ser-
ving a region is called a regionserver. Therefore, HBase uses the range partitioning
technique described earlier in the section Row Partitioning or Sharding. As the tables
grow, they are automatically re-sharded under control of the HMaster server. HBase
uses the Zookeeper clustering infrastructure to provide consistency and availability
[26]. More details of Zookeeper can be found in chapter 6.

HBase also replicates the data based upon a user-specifiable parameter. Writes
are written to all the replicas, and reads can be satisfied from any replica. There-
fore, replication can be used to handle scaling for read-intensive workloads. It
may be noted that since HBase uses sharding for scaling, the discussions in the
section Disadvantages of Sharding are applicable.

220 CHAPTER 5 Paradigms for Developing Cloud Applications

HBase MapReduce: HBase is a key value store, and is a natural fit for
processing by MapReduce. As MapReduce works on key-value pairs, splitting the
input data among multiple nodes helps in scaling MapReduce applications [27].

NOTE
Popular Key-Value Stores
• Amazon SimpleDB is described in Chapter 2 Infrastructure as a Service
• Windows Azure Table Service is described in Chapter 3 Platform as a Service
• Cassandra : Described in this chapter.

Cassandra
Cassandra [28] is a widely used key-value store with some interesting features both in
terms of replication as well as data storage. The data storage features are described
here; Cassandra’s replication and consistency features are described in Chapter 6.
Cassandra was originally an internal project at Facebook before it was released as an
open source project. Since then, it is reportedly in use at both Twitter and Digg.

The basic key-value storage in Cassandra is similar to HBase and is influenced
by Google’s BigTable. The value is specified as in HBase, by a column family
and column. The value is also time stamped; i.e., new values do not overwrite old
values, but are appended with a timestamp.

There are two advanced features of Cassandra that are different from the basic
functionality provided by HBase. They are:

1. Column names in Cassandra can be values, and not necessarily names of values. In
this case, where a value is directly stored in the column name, the column value is
left blank. For example, to store a phone number for users, it is not necessary to
have a column called PhNo which stores values like 5555-5555. Instead, the value
5555-5555 can be directly stored as a column name, if so desired.

2. Columns can also be super columns. If a column in a column family is a super
column, then all columns must be super columns; i.e., super columns and columns
cannot be mixed in a column family. Super columns allow values to be lists of
lists. Consider the example of Pustak Portal, where readers are to be allowed to
store lists of their favorite books. This can be done by having a column called
favorites and storing the names of the books as a list; e.g., “Hound of the
Baskervilles, Maltese Falcon, Dr. Faustus, The Unbearable Lightness of Being”.
Suppose it is desired to categorize these as “Detective Fiction” with the value
“Hound of the Baskervilles, Maltese Falcon”, and “Literary Fiction” with the
value “Dr. Faustus, The Unbearable Lightness of Being”. In many key-value
stores, it is possible to define columns Detective Fiction and Literary Fiction
with appropriate values. In Cassandra, however, it is possible to define a super
column called favorites with values “Detective Fiction”, and “Literary Fiction”
that are themselves columns with values “Hound of the Baskervilles, Maltese
Falcon”, and “Dr. Faustus, The Unbearable Lightness of Being”, respectively.

Scalable Data Storage Techniques 221

NoSQL Systems: Object Databases
The other major type of NoSQL storage systems are object databases. These are
databases that store objects, generally specified in XML notation. Object database
systems thus allow the storage of more complex structures than key-value stores,
which allow storage of values indexed by a single key. To some extent, the differ-
ence is not as great as it seems, since the value field in a key-value store is not
interpreted by the store, and can encode a complex object. However, in the case
of an object database, the database is aware of the structure of the object, and
therefore, searches based on any field of the object are possible. In contrast, the
only searches possible in key-value stores are those where the value is a simple
value, such as an integer or string. Therefore, one important consequence of this
difference is that the application programmer does not need to maintain secondary
indexes, such as the mapping from customer ids to transaction numbers that are
necessary in key-value stores.

MongoDB
MongoDB is a highly scalable storage system that stores structured objects (JSON
objects). It is in use on Craigslist, a community forum to exchange local classi-
fieds found at http://www.craigslist.org/, where MangoDB is being used to archive
billions of records [29, 30].

JSON: MongoDB stores objects that are specified in Java Script Object Nota-
tion (JSON) format [31]. JSON is a lightweight, text-based format that is simple
for humans to read, as well as for machines to parse. It is a common way of seri-
alizing structured objects and can be used an alternative to XML. JSON objects
are built from two fundamental constructs:

i. a list of name-value pairs enclosed in “{}” (which is treated like a structure)
ii. a list of values enclosed in “[]” that represents an array.

These constructs can be compounded to create more complex objects that are
supported by most programming languages; for example, arrays of structures or
structures that contain sub-structures [32]. The transaction data for the Pustak Por-
tal example from Table 5.3 in JSON format follows.

Pustak Portal Example transaction Data in JSON
{"Transaction_Num" : 6732,
"Customer_Id": 38876,
"Book_Id": 99420202,
"Sale_Price": 11.95 }

MongoDB concepts
The following is a brief overview of the programming concepts of MongoDB.
First, every object in MongoDB must have an object id [33]. This is the first
field of the object, and is named _id. If the id is not specified during creation of
the object, a system-generated id named _id is inserted into the object. Objects in
MongoDB are stored in collections, which correspond to tables in relational

222 CHAPTER 5 Paradigms for Developing Cloud Applications

http://www.craigslist.org/

databases, in the sense that the objects in a collection are related to each other,
and are stored together. Object ids should be unique in a collection.

Considering the Pustak Portal example, it can be seen that the transaction data
can be represented by a collection, and similarly the customer data and inventory
data can be collections as well. Using the transaction data described earlier, it can
be seen that there is no single unique id for a transaction (since the key is compo-
site). Therefore, no object id for the transaction will be specified.Therefore, the
JSON encoding shown earlier can be used as a transaction object.

One of the powerful features of MongoDB is that objects can contain pointers
to other objects (similar to foreign keys in relational databases). In the transaction
data, it can be seen that both the Customer_Id and Book_Id fields can be pointers
to other objects, since they could be object ids in their respective collections.

MongoDB programming
In the rest of this section, methods of programming MongoDB are considered
[34]. The cases of inserting a transaction into the transaction table, and getting all
transactions for a customer will be considered. The following code is a simple
example of the set of statements needed to connect to a MongoDB database.

Connecting to a mongodb database
import com.mongodb.Mongo;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
import com.mongodb.DBCursor;

Mongo connPool = new Mongo ("transDB", 27017); // A
DB dbConn = connPool.getDB ("db"); //B

Statement A connects to a MongoDB database server and statement B connects
to a database on the server. Note that it is not necessary in MongoDB to explicitly
create a database; the database is created the first time a client connects to it.

The next snippet shows the statements needed to insert a new transaction into
the transaction data. It is assumed that the transaction data is in a collection called
transactionData in the database db.

Inserting a new transaction
DBCollection transData = dbConn.getCollection("transactionData"); // A
BasicDBObject trans = new BasicDBObject(); // B
trans.put ("Transaction_Num", 6732); // C
trans.put ("Customer_Id", 38876);
trans.put ("Book_Id", 99420202);
trans.put ("Sale Price", 11.95);
transData.insert (trans); // D

It is not necessary in MongoDB to explicitly create the collection; the collec-
tion is created the first time an object is inserted into the collection (assuming that

Scalable Data Storage Techniques 223

a connection to the database has already been initialized as in the previous exam-
ple). Statement A gets a pointer to the transactionData collection if it already
exists; otherwise it creates a pending pointer. Statement B creates an empty object,
which is populated in statement C with the fields of the transaction shown earlier.
This is then inserted into the transactionData collection by statement D. State-
ment D also creates the collection if it did not exist previously.

To find all transactions for a particular customer, it is necessary to be able to
search by Customer_Id. This can be achieved by making it an index as follows.

transData.createIndex (new BasicDBObject ("Customer_Id", 1));

After Customer_Id has been defined as an index, it is possible to find all
transactions for a customer as shown in the following code snippet. Note that in
key-value stores, the store is indexed only by one key (Transaction_Id for the
transaction table) so it becomes necessary in general for the application program-
mer to explicitly maintain a secondary index on Customer_Id. However, this may
not be necessary for XML databases.

Finding all transactions for a customer
DBCursor results;
BasicDBObject query = new BasicDBObject(); // A

query.put ("Customer_Id", 38876); // B
results = transData.find (query);

while (results.hasNext()) {
/* Process results */

}

In the preceding example code, statement A creates an empty query object.
Statement B and the following statement create the query and execute it against
the transaction data. The while loop iterates over the result set. Any desired pro-
cessing can be inserted into the body of the loop. In the body of the loop, the
variable results.next() points to the next item in the result set.

The previous sections looked at multiple techniques available to store scalable
data. The developer can either choose to partition the relational database or use
NoSQL datastores (either key-value pairs or object databases) to ensure that the
central datastore can be used by different components of a cloud-hosted applica-
tion. The next section provides in-depth guidance on developing cloud applica-
tions using the MapReduce paradigm.

MAPREDUCE REVISITED
As studied in Chapter 3, MapReduce is a popular paradigm of programming for
the Cloud, which particularly works well for large-scale data processing. It is very
effective for massively data-parallel applications that can be parallelized to crunch

224 CHAPTER 5 Paradigms for Developing Cloud Applications

data on hundreds or thousands of CPUs. Traditional ways of writing parallel and
distributed programs require the developer to explicitly split the tasks as multiple
processes, deploy these processes on multiple CPUs and also manage the commu-
nication among the processes (through communication APIs) to exchange inter-
mediate data values or final results. Writing such distributed applications is not
very easy for a developer who has programmed for sequential machines. The
MapReduce programming model makes development of such parallel applications
very easy [35]. The programmer just specifies a map function and a reduce func-
tion for the application and the MapReduce framework does automatic paralleliza-
tion and distribution of data to result in efficient parallel execution of the Cloud
application. Furthermore, the platform ensures that the application is fault tolerant
[36]. This section describes some advanced features of the MapReduce framework
and provides some new insights and tips for application developers.

A Deeper Look at the Working of MapReduce Programs
As described earlier, in a MapReduce program, the programmer defines a Map
function and a Reduce function. The Map function takes as input a key-value pair
and generates a set of intermediate key-value pairs. The MapReduce platform then
collates all the intermediate values from parallel Map function execution into
groups that correspond to a single key and sends them to the Reduce function.
The Reduce function, on the other hand, takes this intermediate key and the set of
values corresponding to that key and combines these values to form a smaller
number of key value pairs (typically one or zero values) as the overall result of
the computation.

The processing flow for a MapReduce program is as follows:

• The input data is split into chunks, each of which is sent to different Mapper
processes to execute in parallel. The parallel execution is achieved when the
Map function just reads the relevant key-value pairs given to it.

• The result of the Mapper process is partitioned based on the Key and is sorted
locally. The user can also provide the comparator operator here. This sorting is
done by the MapReduce platform and is referred to as Shuffle.

• Result from the different Mappers that have the same key will be given as
input to the same Reducer instance. The Reduce function (provided by the
user) processes this sorted key-value data to generate the output.

In Chapter 3, a brief description of the data flow between the Map and Reduce
tasks was described (Figure 3.25). Now, Figure 5.7 gives a more detailed view of
the same data flow. As seen, the Shuffle performs a sorting of the keys and passes
values belonging to the same key to the same Reduce task. As mentioned in
Chapter 3, a simple distributed merge sort can be achieved if the map and reduce
functions are identity functions. Within this processing flow, the user can define
multiple functions to implement the required application, as well as optimize the

MapReduce Revisited 225

execution of the application. In particular, the following functions can be defined
by the user:

• map(in_key, in_value) : Process inputs and emit ((out_key, intermediate_
value)list)

It may be noted that the key-value pair emitted by the map function can be
(and it usually is) different from the inputs.

• reduce(out_key, intermediate_value_list) : Analyze and aggregate value
list and emit (out_key, aggregated_value_list)

The Reduce function processes the different values corresponding to the given
key. So, the emitted value is for the same key.

• combine(key2, value2_list) : Analyze and aggregate value list and emit (key2,
combined_value2)

• For efficient execution, the combine function can be defined to perform local
aggregation of results corresponding to a single key. The combine function is
called with the map results on the same processor, before sending it to a
reduce instance executing elsewhere.

• partition(key2) : Determine a data partition and return the reducer number

Data
store 1

Input key* value
pairs

Data
store n

Data
store 2

Map

(Key 1,
values...)

(Key 2,
values...)

(Key 3,
values...)

Data
store 3

Input key* value
pairs

Map

Shuffle : Aggregates intermediate values by output key

Reduce

Key 1,
Intermediate values

Final key 1 values

Map

Map

(Key 1,
values...)

(Key 2,
values...)

(Key 3,
values...)

Reduce

Key 2,
Intermediate values

Final key 2 values

Reduce

Key 3,
Intermediate values

Final key 3 values

FIGURE 5.7

Detailed data flow in map.

226 CHAPTER 5 Paradigms for Developing Cloud Applications

The partition function is given the key with the number of reducers and returns
the index of the desired reducer.

The combine and partition functions help in optimizing the execution of the
parallel algorithm. The combine function reduces the unnecessary communication
between the Mapper and Reducer functions by performing local consolidation of
co-located data with same keys. The partition function can be used for efficient
partitioning of the input data, for subsequent parallel execution. Typically, different
records from data sources (could be different files or a set of lines from a given file
or rows of a database) are used as the partitioning basis. Other sophisticated techni-
ques such as horizontal partitioning in databases and data sharding, described in the
earlier section, can also be implemented within this function. Sharding is most
effective in a shared-nothing architecture such as the one in MapReduce and it can
also use replication of shared data to achieve good performance.

Ideally, the communication between the Input data and the Mapper task can be
minimized if we run the Mapper logic at the data split (without moving the data).
However, this depends upon where the input data itself is stored and if it is possible
to execute Mapper processes on the same node. For HDFS and Cassandra, it is possi-
ble to compute the Mapper task on the storage node itself and the Job Tracker takes
the responsibility of co-locating the Mapper with the data split it processes, hence sig-
nificantly reducing the data movement. On the other hand, pure data stores such as
Amazon S3 do not allow execution of Mapper logic at the storage node. When run-
ning on Amazon Hadoop, it is necessary to create a Hadoop cluster in EC2, copy the
data from S3 to EC2 (which is free), store intermediate results from MapReduce
steps in HDFS on EC2, and write the final results back to S3 [37].

In general, the MapReduce APIs are very simple to use and allow specification
of the parallelism in the application within the specific design paradigm of distrib-
uted merge-sort. The MapReduce platform (Hadoop for example) is expected to
take care of automatic parallelization, fault tolerance load balancing, data distribu-
tion and network performance when implemented on a large network of clusters –
as far as the specific application is concerned.

MapReduce Programming Model
From a programming model perspective, the MapReduce abstract model is based
on the following simple concepts:

i. iteration over the input;
ii. computation of key/value pairs from each piece of input;
iii. grouping of all intermediate values by key;
iv. iteration over the resulting groups;
v. reduction of each group.

Though this programming model is somewhat restrictive, it can handle many
problems encountered in the practice of processing large data sets. There are over
10,000 distinct MapReduce applications that use this new paradigm for cloud-hosted
applications, just from Google. Further, any limitations in the expressiveness of the

MapReduce Revisited 227

paradigm can be overcome by decomposing the problem into multiple MapReduce
computations or solving the sub-problems in other ways.

The MapReduce paradigm provides a clean abstraction for programmers to
easily develop data parallel applications. However, developers need to learn this
new paradigm of programming that borrows a lot from functional programming
concepts. The next subsection briefly introduces functional programming and its
relation to the MapReduce programming model.

A formal definition of the MapReduce programming model is explained and
analyzed in detail in a research paper from Stanford University and Yahoo!
Research published in Symposium of Discrete Algorithms, SODA 2010 [38]. The
definitions and the specifications of the model are quoted from that reference,
with some minor notational modifications:

“Definition 2.1. A mapper is a (possibly randomized) function that takes as
input one ordered <key; value> pair of binary strings. As output the mapper
produces a finite multiset of new <key; value> pairs. It is important that the
mapper operates on one <key; value> pair at a time.
Definition 2.2. A reducer is a (possibly randomized) function that takes as
input a binary string k which is the key, and a sequence of values v1; v2; …
which are also binary strings. As output, the reducer produces a multiset of
pairs of binary strings <k; vk;1>; <k; vk;2>; <k; vk;3>; … The key in the
output tuples is identical to the key in the input tuple.
A MapReduce program consists of a sequence <M1,R1,M2,R2,M3,R3, …> of
mappers and reducers. The input is a multiset of <key; value> pairs denoted
by U0. To execute the program on input U0:
For r = 1, 2, .. R, do:
1. Execute Map:

Feed each pair <k; v> in Up-1 to mapper Mp , and run it. The mapper will
generate a sequence of tuples, <k1; v1> ; <k2; v2>; … Let Up′ be the mul-
tiset of <key; value> pairs output by Mp, that is,

U′p = ∪<kv>∈Up−1Mpð<kv>Þ
2. Shuffle:

For each k, let Vk,p be the multiset of values vi such that <k, vi> ∈ U′p.
The underlying MapReduce implementation constructs the multisets Vk,p from U′p

3. Execute Reduce:
For each k, feed k and some arbitrary permutation of Vk,p to a separate
instance of reducer Mr, and run it. The reducer will generate a sequence of
tuples <k1; v1′> ; <k2;v2′>; … Let Up be the multiset of <key; value>
pairs output by Rp , that is

Up = ∪kRpð<kVk,p>Þ
The computation halts after the last reducer, Rp, halts.

The author goes about defining a new class of problems called MRC and goes
about to prove that the number of iterations needed to complete a MapReduce

228 CHAPTER 5 Paradigms for Developing Cloud Applications

cycle is of O(log n). The SODA paper [38] offers more details of this rigorous
evaluation of the MapReduce paradigm. Another workshop paper [39] also forms
an interesting read for a reader interested in theoretical foundations.

Fundamental Concepts Underlying MapReduce Paradigm
The rest of this section describes the key concepts needed to understand the pro-
gramming model – particularly the fundamentals of functional programming and
data parallelism.

Functional Programming Paradigm
Quoting from the seminal ACM SIPOPS paper by Sanjay et al., which was the
first paper to describe the MapReduce paradigm: “The MapReduce abstraction is
inspired by the map and reduce primitives present in Lisp and many other func-
tional languages” [40].

The functional programming paradigm treats computation as the evaluation of
mathematical functions with zero (or minimal) maintenance of states or data
updates. As opposed to procedural programming in languages such as C or Java,
it emphasizes that the application be written completely as functions that do not
save any state. Such functions are called pure functions. This is the first similarity
with MapReduce abstraction. All input and output values are passed as parameters
and the map and reduce functions are not expected to save state. However, the
values can be input and output from a file system or a database to ensure persis-
tence of the computed data. Programs written using pure functions eliminate side
effects. So, the output of a pure function depends solely on the inputs provided to
it. Calling a pure function twice with the same value for an argument will give
the same result both times. Lisp is one such popular functional programming lan-
guage where two powerful recursion schemes – called map and reduce – enable
powerful decomposition and reuse of code. Similar combinators are available in
Haskell, another functional programming language. Since Haskell has a simpler
notation, the rest of the section uses Haskell’s syntax in the examples.

Haskell’s map combinatory computes the output list of values, by applying a
common operation to the elements of an input list. The result of map is a
sequence such that element j of the output list is the result of applying the func-
tion to element j of the argument list (or sequence). The resulting list is as long
as the input sequences. The following example shows the map combinator used to
double the values of the input list.

Haskell-prompt> map ((*) 2) [1,2,3]
[2,4,6]

The reduce function in Lisp combines all the elements of a sequence (or list)
using a binary operator. For example, if the binary operator is “+”, the result of
reduce will be the sum of all the elements of input list. The equivalent of reduce
in Haskell is called the fold operator. foldl is the left-associative fold operator
and foldr is the right-associative one. In the following example to compute the

MapReduce Revisited 229

sum of all numbers, the expression ‘(+)’ denotes addition and the constant ‘0’ is
the default value.

Haskell-prompt> foldl (+) 0 [1,2,3]
6

As can be seen from the earlier described examples, the MapReduce program-
ming paradigm also follows the functional programming model. The operators do
not modify (overwrite) the data structures. They always create new ones while the
original data is unmodified. The two functions operate on lists (much like Lisp
and Haskell) and the data flow is implicit in the design of the program.

Though the high-level abstraction of map and reduce functional combinators
hasmotivated the MapReduce framework, there are many differences. A detailed
study of the similarities and differences between the MapReduce paradigm and
the map-reduce combinators supported in functional languages is found in Goo-
gle’s MapReduce Programming Model—Revisited [41]. For example, the map
function takes in a list of key-value pairs and generates new key-value pairs but
the map function is expected to process the complete list (using an iterator or
equivalent) using application-specific logic, as opposed to the map combinators in
functional languages which define a simple operation that needs to be applied to
each element of the list to generate the output list. Also, the length of the input
and output lists for map combinator is the same, while that is not the case in the
Map function of the MapReduce framework.

Parallel Architectures and Computing Models
MapReduce provides a parallel execution platform for data parallel applications. This
and the next section describe core concepts involved in understanding such systems.

Flynn’s Classification
Michael J. Flynn in 1966 created a taxonomy of computer architectures that sup-
port parallelism, based on the number of concurrent control and data streams the
architecture can handle. This classification is used extensively to characterize par-
allel architectures. They are briefly described here:

• Single Instruction, Single Data stream (SISD): This is a sequential computer
that exploits no parallelism, like a PC (single core).

• Single Instruction, Multiple Data Stream (SIMD): This architecture supports
multiple data streams to be processed simultaneously by replicating the
computing hardware. Single Instruction means that all the data streams are
processed using the same compute logic. Examples of parallel architectures that
support this model are array processors or Graphics Processing Unit (GPU).

• Multiple Instruction, Single Data Stream (MISD): This architecture operates on
a single data stream but has multiple computing engines using the same data
stream. This is not a very common architecture and is sometimes used to
provide fault tolerance with heterogeneous systems operating on the same data
to provide independent results that are compared with each other.

230 CHAPTER 5 Paradigms for Developing Cloud Applications

• Multiple Instruction, Multiple Data Stream (MIMD): This is the most generic
parallel processing architecture where any type of distributed application can
be programmed. Multiple autonomous processors executing in parallel work
on independent streams of data. The application logic running on these
processors can also be very different. All distributed systems are recognized to
be MIMD architectures.

A variant of SIMD is called SPMD for Single Program, Multiple Data model,
where the same program executes on multiple compute processes. While SIMD
can achieve the same result as SPMD, SIMD systems typically execute in lock
step with a central controlling authority for program execution.

As can be seen, when multiple instances of the Map function are executed in
parallel, they work on different data streams using the same map function. In
essence, though the underlying hardware can be a MIMD machine (a compute
cluster), the MapReduce platform follows a SPMD model to reduce programming
effort. Of course while this holds for simple use cases, a complex application may
involve multiple phases, each of which is solved with MapReduce – in which
case the platform will be a combination of SPMD and MIMD.

Data parallelism versus task parallelism
Data parallelism is a way of performing parallel execution of an application on
multiple processors. It focuses on distributing data across different nodes in the
parallel execution environment and enabling simultaneous sub-computations on
these distributed data across the different compute nodes. This is typically
achieved in SIMD mode (Single Instruction, Multiple Data mode) and can either
have a single controller controlling the parallel data operations or multiple threads
working in the same way on the individual compute nodes (SPMD).

In contrast, task parallelism focuses on distributing parallel execution threads
across parallel computing nodes. These threads may execute the same or different
threads. These threads exchange messages either through shared memory or expli-
cit communication messages, as per the parallel algorithm. In the most general
case, each of the threads of a Task-Parallel system can be doing completely differ-
ent tasks but co-ordinating to solve a specific problem. In the most simplistic case,
all threads can be executing the same program and differentiating based on their
node-id’s to perform any variation in task-responsibility. Most common Task-Par-
allel algorithms follow the Master-Worker model, where there is a single master
and multiple workers. The master distributes the computation to different workers
based on scheduling rules and other task-allocation strategies.

MapReduce falls under the category of data parallel SPMD architectures.

Inherent Data Parallelism in MapReduce Applications
Due to the functional programming paradigm used, the individual mapper pro-
cesses processing the split data are not aware (or dependent) upon the results of
the other mapper processes. Also, since the order of execution of the mapper func-
tion does not matter, one can reorder or parallelize the execution. Thus this

MapReduce Revisited 231

inherent parallelism enables the mapper function to scale and execute on multiple
nodes in parallel. Along the same lines, the reduce functions also run in parallel,
each instance works on a different output key. All the values are processed inde-
pendently, again facilitating implicit data parallelism.

The extent of parallel execution is determined by the number of map and reduce
tasks that are configured at the time of job submission [42]. This number depends
upon the inherent parallelism in the application and the number of nodes available
in the MapReduce infrastructure. A general rule of thumb is to ensure that the num-
ber of map and reduce tasks is much larger than the available number of nodes.
However, if the algorithm is not embarrassingly parallel, the maximum number of
data splits should be chosen as the number of Map tasks; for example, if there are
100 nodes in a MapReduce cluster. The number of Map tasks can be set to larger
than 1000 if the tasks have no dependencies at all. However, if, for example, the
Map task is to each read from separate files and there are only a maximum of 10
files expected to be used, then the number of Map tasks should be set to 10. The
number of reduce tasks should at least be the number of distinct keys expected in
the intermediate results, as those are the computations that can be performed in par-
allel. Now if the map tasks are expected to generate diverse keys, one for each Eng-
lish alphabet, then the number of reduce tasks should be 26 or more. As described
in the next paragraphs, there is a way of defining the partition function such that
reduction tasks even for a single key can be parallelized by reducing in a hierarchi-
cal fashion. At the end of the day, the logic of the application or the algorithm used
limits the amount of parallelism that can be exploited. Hence, choice of the right
algorithm is important to make the best use of the platform capabilities. The next
section gives some examples and tips for using the right algorithm.

Some Algorithms Using MapReduce
Clearly, there is a considerable amount of work needed from the developers to formu-
late the solution to their problem and design the application to suit the MapReduce
paradigm. This section details a few example problems and an appropriate algorithm
that can be used in a MapReduce context. The readers can use these as standard
models and design their own applications along similar lines. Only key snippets or
code fragments of the Map and Reduce functions are shown here for each example;
complete Java code for one such sample was described in Chapter 3.

Word Count
The following is the most quoted simple example of counting word occurrences.
The problem is to find the total number of word occurrences in a corpus of text
documents. Each Map function is called with a key that is the document name
and value has the document contents.

map(String key, String value):
for each word w in value:

EmitIntermediate(w, "1");

232 CHAPTER 5 Paradigms for Developing Cloud Applications

reduce(String key, Iterator values):
int result = 0;
for each v in values:
result += ParseInt(v);

Emit((key,AsString(result)));

The Map function just outputs the number ‘1’ for each word. So, the intermedi-
ate key-value pairs are of the form {("this", "1"), ("is", "1"), ("a", "1"),
("nice", "1"), ("book", "1"), ..., ("a", "1"), ..., ("book", "1")...}. The
Reduce function is called with common key values (a and book in the example).
So, all that the Reduce function has to do is to just add the count (value) and emit
the result for that particular word (key). Please note that not all the key-value pairs
corresponding to a specific key may land at the same reducer. There may be hier-
archical consolidation that can happen since the number of such key-value pairs can
be much more than the number of reducers. So, the output of one Reduce function
can go in as an input of another Reduce function along with the output of mappers,
corresponding to the same key. So, we can define a combine function which is the
same as the reduce function to enable local consolidation of index counts.

Sorting
Sorting is the simplest algorithm that MapReduce is most suited for. As described
earlier, the MapReduce computation follows a distributed sorting pattern and hence
having identity Map and Reduce functions automatically achieves sorting of its inputs.

For sorting, the inputs are a set of files that contain the elements to be sorted,
one per line. The mapper key is the file name and line number and the mapper
value will be the contents of the line.

// Sort Algorithm
map(String key, String value):
for each word w in value:

EmitIntermediate(w, "");

reduce(String key, Iterator values):
int result = 0;
for each v in values:

Emit((v,""));

This algorithm takes advantage of the reducer property that (key, value) pairs
are processed in order by key and that the output from the reducers are themselves
ordered. This approach will involve lots of communication during the shuffle as
we assume a single reducer.

A major milestone in the development of MapReduce was the solution to the
massive problem of sorting a terabyte of data using the TeraSort algorithm (pro-
posed by Jim Gray in 1985) using Apache Hadoop. TeraSort absolutely fits the
MapReduce programming model and works very well when a custom partitioner
is used. This special partitioner should be such that all keys where sample[i − 1]
≤ key < sample[i] are sent to reduce i. This ensures that the output of reduce i

MapReduce Revisited 233

are all less than the output of reduce i+1. We should also pick the hash function
for the data such that k1 < k2 ⇒ hash(k1) < hash (k2) and that will ensure that the sort-
ing of the hash values automatically results in sorting of the keys.

The partition function used in this case of multiple reducers is given here:

partition(key) {
range = (KEY_MAX - KEY_MIN) / NUM_OF_REDUCERS
reducer_no = (key - KEY_MIN) / range
return reducer_no
}

TF-IDF
The Term Frequency – Inverse Document Frequency (TF-IDF) algorithm is the
most common computation used in text processing and information retrieval appli-
cations. This is a statistical quantity used to measure the importance of a word
with respect to a document corpus. The term frequency of term i in document j
is given by the following equation, where nI, j is the number of occurrences of
term ti in document dj

tfi,j =
ni,j

∑knk,j

The summation in the denominator gives the number of occurrences of all
terms in the document. The inverse document frequency measures the importance
of the word, by comparing with its commonality of occurrence in other docu-
ments. Specifically, the Inverse Document Frequency is given by

idfi = log
jDj

jfj: ti∈djgj
Here |D| gives the number of documents in the repository and the denomina-

tor gives the number of documents containing the term ti. The problem is to com-
pute tf i,j * idfi

In order to put this in MapReduce framework, the problem is broken into the
following four jobs:

1. Compute word frequency within a document.
• This is exactly the same as the first example in this section. The Mapper

takes as input (docname, contents) and outputs ((term, docname), 1)
• The reducer sums the counts for each word in the document and outputs

((term, docname), n).
2. Compute the Word Counts for the documents.

• Mapper takes as input ((term,docname), n) and outputs (docname,
(term, n)).

• Reducer sums the frequencies of the individual n’s in the same document and
also sends the original data from the mapper. It outputs ((term, docname),
(n,N)) where n is the term frequency and N is the length of the document.

234 CHAPTER 5 Paradigms for Developing Cloud Applications

3. Find the Word Frequency in the corpus
• For this the mapper takes as input ((term, docname), (n,N)) and outputs

(term, (docname, n, N, 1)) thus also passing the data that has already
been computed.

• The reducer sums the counts for the word in the corpus and outputs
((term, docname), (n,N,m)).

4. The final job is to compute the TF-IDF value
• For this the mapper takes as input ((term, docname), (n, N, m)) and

calculates the TF-IDF as (n/N)*log (D/m) where D is the size of the document
corpus. D can either be assumed or can be found in another simple
MapReduce cycle. The mapper outputs ((term, docname), TF*IDF)

• The reducer in this case is an identity function

As can be seen from the earlier, more complex example, the short burst of
data parallel activities in the algorithm are formulated as separate individual
MapReduce jobs to result in the full execution of the algorithm.

Breadth-First Search
The last problem considered here is about graph-based algorithms [43]. Due to the
functional programming nature of the application, the graph data structure cannot
be stored in global memory and operated upon by different map and reduce
nodes. Also, sending the entire graph to every map task will require a huge
amount of memory. Therefore, the solution needs to carefully consider how the
graph itself is represented.

A common way of representing graphs is to have the graph nodes in an array and
maintain the edges or references to other nodes as a linked list. This representation
requires that this common data structure be stored in a shared memory and protected
with locks to avoid read-write collisions and inconsistencies. Another well-known
approach is to store a graph as an adjacency matrix. Here, the graph is represented
by a 2-d array (matrix) with the number of rows and columns equal to the number of
nodes in the graph. The entry A[i, j] = 1 implies that there is an edge from node i to
node j and a value 0 implies that there is no edge between i and j nodes. This repre-
sentation nicely lends itself to data parallel operations on the matrix. Figure 5.8
shows an example graph and its adjacency matrix is shown in Table 5.5.

a b

c

d
e

FIGURE 5.8

Representing a graph as an adjacency matrix.

MapReduce Revisited 235

While this is a simple way of representing the graph, most adjacency matrices
for large graphs will be sparse with many 0’s as can be seen even for this small
graph in the example of Figure 5.8. Such sparse matrices are represented as arrays
with only non-zero entries for every row (node). One sparse matrix representation
for the previous example is shown in Table 5.6.

Table 5.6 shows how the adjacency matrix can be represented in an array. In
the table, pairs of cells have been shaded in order to make the sparse representa-
tion clearer, and have no other significance. The first two array elements (1, 2)
represents the fact that there is an edge from node 1 to node 2. It can be seen that
the array contains a list of all the edges in the graph. This representation is very
succinct and can be passed around among the map and reduce functions.

To take a concrete example of an algorithm that uses these concepts, a com-
mon graph search application of finding the Shortest Path from a source node to
one or more destination nodes is described next. Readers who have done a basic
data structure course would have learned about Dijkstra’s algorithm and Breadth
First Search (BFS). While Djikstra’s algorithm is most efficient in terms of redu-
cing the number of computations, the MapReduce version of the shortest path
using the same concept will employ BFS to exploit maximum parallelism.

The overall idea is to find the solution to this problem inductively.

For srcNode, lengthTo(srcNode) = 0
For all nodes n directly reachable from srcNode:

lengthTo(n) = 1

For all nodes n reachable from some other group of nodes S:

lengthTo(n) = 1 + min(lengthTo(m), m) where m is in S

Now converting this algorithm to fit the MapReduce paradigm:

• The Mapper task receives a node n as the key with a value (D, reaches-to)
where D is the distance of the node from the srcNode and reaches-to is the
list of nodes reachable from n

• The Mapper advances the known frontier by one hop and performs the breadth-
first-search to output (n,d,reaches-to) with new nodes added to the value.

Table 5.5 Adjacency Matrix

0 1 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

Table 5.6 Sparse Representation of Adjacency Matrix

1 2 2 3 2 4 4 5

236 CHAPTER 5 Paradigms for Developing Cloud Applications

• The algorithm stops when d stops changing.
• We need a non MapReduce task that handles the iteration and ensures

termination of the processing when the length of the reaches-to stops changing.

More complex algorithms can be developed using MapReduce. The Apache
Mahout project is a platform that implements multiple machine learning algo-
rithms on Hadoop. The interested reader is encouraged to experiment with
Mahout.

RICH INTERNET APPLICATIONS2

Since by definition cloud computing services have to be accessed over the inter-
net, end user oriented applications need to have a pleasing interface that is both
user friendly and rich in experience. Such applications are categorized as Rich
Internet Applications (RIA). The term richness is usually associated with the
ability of the application to provide a very good user experience rather than just
presenting the desired/information. An additional advantage is the ability to off-
load some processing to the rich clients.

Consider a simple example of an application showing sales data as a table of
numbers for a series of years, and revenues for each of these years against differ-
ent regions in a country. A traditional web application would get the data from
the server and display it as a table. For any statistical computation on this data,
the browser would need to go back to the server. Displaying a chart would need a
further server interaction. With RIA, these all can be done right on the client side.
Therefore, the web page looks “rich” in content and has lower delays during inter-
action – resulting overall in a much better user experience. This section describes
platforms that enable development of such Rich Internet Applications.

Getting Started
Rich Internet Applications (RIA) can either run within a web browser with client-
side scripts (JavaScript) and a browser plug-in or execute within a secure sandbox
as desktop applications (e.g., Flash applications). For example, when registering at
a web site, a simple validation of the username that it is an email can be done on
the browser with a Javascript script, to give an interactive experience. Better still,
users may remember search engines that support auto completion of search terms.
Such experiences are possible with client-side scripting.

RIA platforms have their own runtime libraries, execution engines and render-
ing mechanisms. For example, Flex by Adobe [44] runs on the Flash runtime,
and, for Microsoft Visual Studio (Expression Blend), the runtime would be Silver-
light [45]. It may be noted that this runtime runs on the client side independent of
the server. In fact the server may not even know the exact platform on which the

2Contributed by Dr. Prakash Raghavendra, Assisitant Professor, NITK-Suratkal, India.

Rich Internet Applications 237

client application runs. This way the application development at the client and ser-
ver side can go on independently. Additionally, the same security sandbox restric-
tions apply regardless of whether the application runs in the browser or in a
desktop application. For some runtimes, such as Adobe, the runtime client source
code for browser plug-ins can run on the desktop runtime as well. Figure 5.9
shows the logos of a few of the popular RIA technologies available today.

RIA Development Environment
The development of an RIA starts with an Integrated Development Environ-
ment (IDE) such as Flash Builder.3 The developer uses this IDE to develop the
application using two alternate views in the IDE. The first, called a design view
is used to design the layout of the application, e.g., where buttons or text boxes
should be placed. Most of the components needed by developers (e.g., various
kinds of buttons and charts) are available in the (usually free) SDK. After com-
pleting the “look-and-feel” of the design, the code view is used to fill in source
code for each component. For example, in a login screen, the developer would
want to validate the user id and password entered in the text box provided, and if
the validation fails, display an error message.

Generally, in IDEs, the code is written in some extension of XML. In the case of
Flex, the markup language is known as MXML. However, as shown in Figure 5.10,
the source code can contain ActionScript code as well. The ActionScript scripting
language is an ECMA standard (like JavaScript). ActionScript methods are typically
used for flow control and object manipulation features which are not available in
MXML. Also, MXML is actually a higher-level abstraction built on top of

RIA

FIGURE 5.9

Illustration of some RIA technologies.

3Also sometimes referred to as Flex4.

238 CHAPTER 5 Paradigms for Developing Cloud Applications

ActionScript. The SDK components, MXML code, and ActionScript code are input
to the compiler (which is part of the SDK). The compiled output is an intermediate
representation (SWF in the case of Flex). This SWF file in turn is embedded into an
HTML wrapper, since browsers understand only HTML. The browser eventually
calls the browser plug-in whenever it encounters SWF input (see Figure 5.10). It can
also be seen that the same SWF code can be run in the Adobe AIR runtime on the
desktop as well as a desktop application.

The following is an overview of the process for the well-known RIA technolo-
gies in Figure 5.9. The markup language for Visual Studio is called XAML. In
the case of Microsoft Silverlight, the .NET SDK compiler converts XAML and
SDK components into CLR intermediate code which is run on the .NET platform
on the client side. Similarly, with the OpenLazslo platform, the markup language
LZX can be compiled into either SWF or run directly on the Java Servlet Server
with the same behavior and look-and-feel. In the case of AJAX (Asynchronous
JavaScript And XML), the script is written in JavaScript, which is directly inter-
preted by the browser. So, no browser plug-in is needed in this case (in contrast
to ActionScript or OpenLaszlo). However this may lead to browser dependencies
and incompatibilities, and the same AJAX application may not run with the same
behavior on all browsers. Finally, JavaFX has JRE as the runtime and JavaFX as
the scripting language.

A Simple (Hello World) Example
The following is a simple example RIA application using Flex as an illustrative
platform.

1 <?xml version="1.0" encoding="utf-8"?>
2 <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

Adobe flex/flash builder

Browser

Flex
SDK

Flex
code

Flex
compiler

SWF
file

IE/FF

Html+
.js

MXML
code

As
code

Flash
player/

air

FIGURE 5.10

RIA development environment.

Rich Internet Applications 239

3 layout="absolute" creationComplete="init()">
4 <mx:Button id="mxmlButton" label="This one is done by MXML" x="10"
y="10" click="mxmlButton.label='MXML Button says Hello World!'" />
5 <mx:Script>
6 <![CDATA[
7 import mx.controls.Button;
8 //Init Function is executed when the application boots

9 public var newButton:Button = new Button();

10 private function clickHandler(e:Event):void

newButton.label='ActionScript Button - Hello World!';

11 }
12 private function init():void {

13 //Modify Properties
14 newButton.label = "This one is done by ActionScript";
15 newButton.x = 10;
16 newButton.y = 40;
17 newButton.addEventListener(MouseEvent.CLICK, clickHandler);
18 //Add the new button to the stage (Screen)
19 this.addChild(newButton);
20 }

21]]>
22 </mx:Script>
23 </mx:Application>

The previous code creates two buttons – one created by MXML code and the
other by ActionScript in Flex3. As can be seen from the following, this example
illustrates points. First, it provides an overview of the development process of a
simple RIA application. Second, this application shows that all the MXML code
is converted to ActionScript by the preprocessor.

The first line gives the XML version. Line number 2 gives the type of the
application. There are two possibilities – mx:Application, which would be
deployed and run on the browser or mx:WindowedApplication which would be
deployed on the desktop runtime. These also give the XML namespaces from
which the components should be picked up for the compilation and building the
SWF binary. The same line also specifies how to layout the application. Here the
layout is absolute which means that the layout offsets (like x=40 etc) are absolute.
The other option is relative, which specifies offsets with respect to horizontal or
vertical boxes within the main canvas. The creationComplete() statement tells
the runtime to run the init() function when all the necessary initializations are
complete. The runtime initializes many default objects and finally when it is ready
to start the application it calls init() as declared.

240 CHAPTER 5 Paradigms for Developing Cloud Applications

NOTE
Hello World example for RIA
• Shows that MXML and ActionScript can be mixed in the same script
• MXML: XML declaration that creates button with attributes and mouse click action

definition
• ActionScript: define attributes, mouse click action as procedure

Line number 4 is the MXML declaration for creating the MXML button. The
button has attributes such as the positioning (using x= and y=), the label, and spe-
cifying the action that should be taken when the button is clicked. The init()
function creates an ActionScript version of the button. Lines 5 through 22 show
how to create the same button in ActionScript with the same attribute. This is
wrapped in the tag called mx:Script to distinguish between MXML code and the
ActionScript code. As can be seen, these two can be mixed in the same applica-
tion as shown.

The ActionScript code is as follows: first, the button is defined and created in
line 9. The mouse click handler (which has to be executed when the ActionScript is
clicked) is defined in line 10. Finally lines 12–20 invokes the main init() function
which creates the button with attributes given. Now, when this simple application is
compiled using the Flex IDE, it reports errors, if any. When the application is
run in the Flex IDE, it opens up the browser and displays the page as shown in the
Figure 5.11. Any difference in the screen can be seen when the application is
launched and when one of the buttons is clicked, since the MXML is converted to
ActionScript before execution.

FIGURE 5.11

Output of simple “Hello World” example.

Rich Internet Applications 241

Client-Server Example; RSS Feed Reader
As described earlier, Flex is a client-side technology. However, since the clients
have to access a server, the Flash platform provides APIs for this purpose. The
same is true with other client technologies listed before. It is not necessary for
developers to write the code needed to connect to a server. Current RIA tools gen-
erate the client side code for any of the back ends supported if the developer pro-
vides some simple information such as the backend, the data structure being
accessed, and how it has to be presented on the client side. In Flash4, these utili-
ties are called the data-centric features of Flash4. Flash4 can automatically gener-
ate the client side code as well as the PHP (wrapper) code for the backend, for,
say, updating the records, creation, deletion, etc. These facilities significantly
reduce the amount of time taken to develop such applications.

Though each client technology may be connected to any backend (e.g., PHP,
Java), a particular client technology may work better with some sets of back-ends.
For example, though Flex supports many back ends such as Java, PHP, and Perl,
its connectivity to PHP has better performance due to an open source library
called AMFPHP, which is tuned to Flex/PHP.

The following example shows how to connect to a backend from Flex/Flash.
Assume an RSS Feed Reader in Flex which reads the RSS feeds from a web site
is to be written (here http://www.manfridayconsulting.it is considered for illustra-
tion). When the Flex application is started it reads the feed posted on this web
site and displays it in a more user-friendly manner. Users can click on an item to
get more information. The following code in Flex does this:

1. <?xml version="1.0" encoding="utf-8"?>
2. <mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute" width="380" height="492">

3. <mx:Script>
4. <![CDATA]

5. import mx.rpc.http.HTTPService;
6. import mx.rpc.events.ResultEvent;
7. import mx.rpc.events.FaultEvent;

8. private var feed:HTTPService;

9. [Bindable]
10. public var feedresult:Object = null;

11. public function send_data():void {
12. feed = new HTTPService();
13. feed.method = "POST";
14. feed.addEventListener("result", httpResult);
15. feed.addEventListener("fault", httpFault);
16. feed.url = "http://www.manfridayconsulting.it/index.php?option=

com_content&view=frontpage&Itemid=19&format=feed&type=atom";
17. feed.send(parameters);

242 CHAPTER 5 Paradigms for Developing Cloud Applications

http://www.manfridayconsulting.it

18. }
19. public function httpResult(event:ResultEvent):void {
20. feedresult = event.result;

21. }
22. public function httpFault(event:FaultEvent):void {

23. }
24.]]>
25. </mx:Script>

26. <mx:HBox y="10">
27. <mx:Button id="startbutton" click="send_data()" label="start"

width="80"/>
28. <mx:VBox>
29. <!–The blog header–>
30. <mx:Label text="{feedresult.feed==null?'':feedresult.feed.

title}">
31. </mx:Label>
32. <mx:Label text="{feedresult.feed==null?'':feedresult.feed.

subtitle}">
33. </mx:Label>
34.
35. <mx:DataGrid id="feedlist" dataProvider="{feedresult.

feed==null?'':feedresult.feed.entry}"
height="157" selectedIndex="0">

36. <mx:columns>
37. <mx:DataGridColumn dataField="title" width="200" />
38. </mx:columns>
39. </mx:DataGrid>
40.</mx:VBox>
41. </mx:HBox>
42. <mx:ApplicationControlBar x="0" y="237" width="380" height="217">
43. <mx:TextArea height="180" width="354" borderStyle="solid"

borderThickness="4" themeColor="#0E83E7" borderColor="#979DA1"
cornerRadius="13" alpha="0.7" htmlText="{feedresult.feed==null?'':
feedresult.feed.entry[feedlist.selectedIndex].content}"/>

44. </mx:ApplicationControlBar>
45. </mx:Application>

Some of the basic information in lines 1–4 has already been explained. There
are three basic methods of getting information from the backend in Flex –
HTTPService, WebService and RemoteObject service. HTTPService is used to
get data from the backend using the HTTP protocol. WebService uses the SOAP
messaging format over HTTP. It directly connects to the service end-point rather
than talking to the PHP or Perl back-end. Finally RemoteObject Service uses
native format to access business object data directly. This is possible only if the
formatting is well agreed upon on both sides. For example, if Flex connects to
Adobe’s Cold Fusion backend, since both can talk to each other in native format,

Rich Internet Applications 243

the Flex client can directly invoke methods on the server side and get the data in
the native format. This gives much better performance since there is no need to
send the data in XML format and parse the data at the client side.

The current example uses the HTTPService API in the Flex to get the RSS
feeds in XML from the web site in lines 5–10. The method send_data() creates a
new HTTPService object and fills in necessary details such as the URL, the event
listeners, HTTP method to be invoked (POST or GET) and finally sends the request
to the web site. These can be seen in lines 10–18. The event handlers (the result
and faulty event handlers) are declared in lines 19–23. The actual UI components
are declared from line 26. As can be seen in Figure 5.12, there are three UI com-
ponents in this application – an HBox, a VBox and a text area to display the con-
tent of the feed. Once these are declared, the data has to be retrieved from the
web site and bound to the respective UI component for displaying. These bind-
ings are typically done through id fields. For example, we can see that the fee-
dResult which is filled by the result event handler is used to fill in the DataGrid
and then finally the details of these RSS feeds are passed, when clicked on, to the
text area through the feedlist id of the DataGrid.

Advanced Platform Functionality
Before proceeding with a more complex example involving a web portal like Pustak
Portal, this section presents some of the advanced functionality present in Flex4.

FIGURE 5.12

Output of the Feed Reader before clicking “start”.

244 CHAPTER 5 Paradigms for Developing Cloud Applications

Event Handling: Event Handling is an important functionality present in every
platform. RIA applications typically call methods asynchronously. For example,
consider a Flex application which has two components – one to display the share
prices of companies entered in a text box, and the other displaying the stock
exchange index (live index). It is desirable that the index update in parallel with the
share prices. Event handlers ensure that the entire Web application is not single-
threaded, and that UI components of the same application can respond in parallel to
user actions/inputs. This essentially gives the power of such applications.

At a high level, event handling works as follows. When an object needs to
take an action based upon an event (e.g., in the example earlier, a stock market
ticker updating itself in response to a change in the stock index) it registers a lis-
tener for the event. The event-handling subsystem invokes the listener when the
event is complete, and the listener can take appropriate action. Examples of events
include user actions, such as mouse clicks, as well as system events such as
receipt of a reply from a remote server, or some change in the application such as
creation or destruction of an object. The previous example contained a number of
fault handlers (result and fault events).

RemoteObject invocation: As explained previously, RemoteObject service
invokes methods on the backend by using a native and not necessarily standard
protocol. Data is passed between the server and the application in a binary format
called Action Message Format (AMF). The example that follows shows a
RemoteObject service and how to invoke a remote method on the ColdFusion
backend. The package that is to be called is given by source and the methods and
the corresponding event handlers are also shown.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application>
...

<mx:RemoteObject
id="myRequest"
destination="ColdFusion"
source="flexapp.return">
<mx:method name="returnRecords" result="returnHandler(event)"

fault="mx.controls.Alert.show(event.fault.faultString)"/>
<mx:method name="insertRecord" result="insertHandler()"

fault="mx.controls.Alert.show(event.fault.faultString)"/>
</mx:RemoteObject>

</mx:Application>

Advanced Example: Implementing Pustak Portal
Consider Pustak Portal to illustrate how we could develop a good client side using
Flex and highlight the usage of the previously described features and utilities of
the platform. It is assumed that there are two types of users for Pustak Portal. The
first are the end-users who use platform services like documentation services (like
document cleanup, image processing, etc), and the second are the component

Rich Internet Applications 245

developers who would like to sell their components to Pustak Portal and get paid
whenever their services are being used on the portal. The portal would need an
application that displays the user’s loaded images/documents. It also needs some
way of allowing developers to publish their components for the customers to use
for processing of images/documents. We can write one component to display such
images and documents, and another component for processing these documents
and displaying them (using item renderers).

The customized photo viewer can be written as an ActionScript component
called myCollection.photoViewer. The application has created three components
for simple illustrative purposes: ThumbNailView, CarouselView and SlideShow-
View. These views are created as different components as shown in the following
source code. Each of these have their own item renderers to view the photos
stored in the gallery.

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
paddingBottom="0" paddingTop="0"
paddingLeft="0" paddingRight="0"
layout="vertical"
pageTitle="Photo Viewer"
creationComplete="init()" viewSourceURL="srcview/index.html">

<mx:Script>
<![CDATA]

import mx.collections.ArrayCollection;
import mx.rpc.events.*;

import myCollection.photoViewer.Gallery;
import myCollection.photoViewer.PhotoService;

[Bindable]
private var service:PhotoService;

private function init():void
{

service = new PhotoService("data/galleries.xml");
}

]]>
</mx:Script>

<mx:Style source="main.css" />

<mx:Binding source="service.galleries.getItemAt(0) as
Gallery" destination="gallery" />

<mx:ViewStack id="views" width="100%" height="100%">

<ThumbnailView id="thumbnailView" gallery="{gallery}"
../>

<CarouselView id="carouselView" gallery="{gallery}"
../>

246 CHAPTER 5 Paradigms for Developing Cloud Applications

<SlideShowView id="slideshowView" gallery="{gallery}"
../>

</mx:ViewStack>

</mx:Application>

Adding Video Playback to Pustak Portal
It’s interesting to see how complex-looking applications such as a YouTube web
site can be written in Flex relatively easily. This is due to its many advanced fea-
tures. We will look at one such example in this section.

Consider how to write a Flex application which would play a given video. The
video has to be a FLV video which can be played on Flash Player (since Flash
Player is what runs the Flex application). Assume that the video is available in
Pustak Portal and it can be accessed through HTML. The following code does
this:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
layout="vertical" horizontalAlign="center">

<mx:Script>
<![CDATA[
import mx.events.VideoEvent;

private var mute : Boolean = false;

private function muteHandler(event:MouseEvent):void{
if (!mute) {

player.volume = 0;
mute = true;
muteButton.label = "Unmute";

}
else{

player.volume = volSlider.value;
mute = false;
muteButton.label = "Mute";

}
}

private function videoDisplay_playheadUpdate(event:VideoEvent):
void{

progressBar.setProgress(event.playheadTime, player.totalTime);
}

]]>
</mx:Script>

<mx:Label text="Basic Video Player Example in Flex3"
fontFamily="Georgia"

Rich Internet Applications 247

fontSize="30" fontWeight="bold" color="#6D0A26"/>

<mx:TextInput id="URLinput" x="10" y="10" width="500"/>

<mx:VideoDisplay id="player" source="{URLinput.text}"
maintainAspectRatio="true"
width="450" height="350" autoPlay="false"
playheadUpdate="videoDisplay_playheadUpdate(event);"/>

<mx:ProgressBar id="progressBar" mode="manual" label=" "
width="{player.width}"/>
<mx:HBox width="450">

<mx:Button label="Play" click="player.play()"/>
<mx:Button label="Pause" click="player.pause()"/>
<mx:Button label="Stop" click="player.stop()"/>
<mx:Button id="muteButton" label="Mute" click="muteHandler
(event)" width="70"/>
<mx:HSlider id="volSlider"

liveDragging="true"
minimum="0.0"

maximum="1.0"
value="1.0"
snapInterval="0.01"
change="player.volume=volSlider.value"
width="100"/>

<mx:Label text="{int(player.playheadTime)} / {int(player.
totalTime)}"

color="#FFFFFF" width="73"/>
</mx:HBox>

</mx:Application>

The main application starts with mx:TextInput which gets the URL that has
the FLV file to be played in the video player. mx:VideoDisplay is a useful UI
control in Flex SDK which can be used for playing a given FLV video. As can
be easily seen, it takes source as a parameter, which should be set to the video
location or the FLV file. playerUpdate is a method which would be called when-
ever there are some changes in the video at a regular interval specified. In our
case, the times on the progress bar are updated whenever this method gets called.
Next a progress bar is created that shows the length of the video played, and an
HBox control which has player controls like Play, Stop, Mute and Pause for the
video. A volume control slider is also available which sets the volume for the
player. All these controls pass essential controls to the main controlling method
VideoDisplay. The video player shown previously can be seen in Figure 5.13.
This example can be extended to get other features such as playlists of the user or
favorite videos. Various types of statistics about the videos played on the server
can also be maintained (e.g., frequently played videos, last time the video was
played).

248 CHAPTER 5 Paradigms for Developing Cloud Applications

SUMMARY

In this chapter, multiple deep technical concepts that will aid in writing efficient
cloud applications were discussed. The chapter started with techniques for develop-
ing efficient highly scalable applications with a particular focus on scaling storage
and developing MapReduce applications. The basic principle of scale storage is to
partition and three partitioning techniques were described. The first technique, func-
tional decomposition, puts different databases on different servers. The second tech-
nique – vertical partitioning – puts different columns of a table on different servers.
The third technique – sharding – is similar to horizontal partitioning in databases in
that different rows are put in different database servers. However, the partitioning is
not transparent to the application. Partitioning has disadvantages in that some fea-
tures that are commonly possible in relational databases such as the ability to per-
form joins and guaranteed data integrity are made more complex. Though the
partitioning techniques have been described in the context of relational databases,
they are applicable to non-relational databases as well.

Next, NoSQL storage systems which have emerged as an alternative to rela-
tional databases have been described. The common characteristics of NoSQL sys-
tems are that, unlike relational databases, they have a flexible schema, and
simpler interfaces for querying. Additionally, they commonly have built-in support
for automatic scaling (typically via sharding and replication). However, as

FIGURE 5.13

Output of the basic video player in Flex.

Summary 249

discussed in Chapter 6, many of them relax the strict consistency that relational
databases provide, so that the performance is not hit.

Two types of NoSQL systems have been discussed. The first kind, key-value
stores, typically store a value which can be retrieved using a key. The value can
be a complex object; however, the key-value store treats the value as an opaque
sequence of bytes. Since the value is opaque to the storage, records with differ-
ent keys can have different formats. The second type, object/XML databases,
store objects which can be retrieved based on a key, which can be part of the
object. Additionally, indexes can be built on any attribute of the object. Object
databases, therefore, typically allow more sophisticated queries compared to
key-value stores. The detailed architecture of NoSQL systems is described in
Chapter 6.

Next the emerging paradigm of developing cloud applications using the
MapReduce technique was detailed. Basic concepts of data parallelism and
functional programming were covered. Detailed dataflow within the MapReduce
architecture was seen with an understanding of the parallization capability that
MapReduce provides. It was realized that there is a need to develop new types
of algorithms to leverage the data parallel computation platform enabled by
MapReduce platforms. We looked at many advanced algorithms to solve typical
subproblems (such as sorting, word count, TF-IDF) on MapReduce platforms. A
formal specification of the MapReduce computation was also briefly described.

Rich Internet Technology relies on running the application either within the
sandbox of the browser or as a desktop application. The development starts with
writing the source in some extension of XML syntax like MXML (for Flex),
XAML (Silverlight), LZL (for OpenLazslo) and so on. The application can have
native ActionScript or JavaScript components in the same source file too. Tools
like Flex/Visual Studio help the developer to use the design view when he designs
the UI component layout and then switch to the source view for completing the
interactions of the component and event handling. The source also can have
embedded style sheets (CSS) for a standardized look and feel of the application.
Once this is done, the whole application is compiled using the compiler given in
the SDK and is ready to be rendered on the platform.

The current state of the technology is that there are only a few rendering
engines which are popular. Currently, Flash (Adobe), which has captured the
majority of the RIA applications, is the most popular to use due to the ease of
building applications and the plethora of supported features. The other engines
which are becoming popular are Silverlight (Microsoft) which is a .NET platform.
OpenLaszlo is an open source effort to run this engine on either JSP server or on
Flash. They claim the look and feel is identical on both these servers.

Adobe’s Flash is much like a virtual machine that renders the graphics, multi-
media and code pretty efficiently. Flash Player has a long history and the latest is
FP version 10. Flash Player actually has both ActionScript Virtual machine
(AVM) and a multimedia rendering engine. The current AVM interprets the
AS3.0. It does sophisticated optimizations before running this on the runtime.

250 CHAPTER 5 Paradigms for Developing Cloud Applications

Similarly, Adobe has managed to keep the multimedia quality by bringing in the
latest multimedia standards into Flash such as H.264 standards.

Silverlight is poised as a competitor to Flash from Adobe in this space.
Though it may take some time for Silverlight to catch up with Flash as a market
leader, Silverlight is impressive with its early versions. Silverlight uses XAML as
its markup language. XAML can be embedded easily within the HTML and the
JavaScript methods. One big advantage of Silverlight right now is that Silverlight
objects are Search Engine Optimization (SEO) friendly, in the sense that these
objects can be searched as with text pages, while Flash objects (which are com-
piled objects) cannot.

SUN’s JavaFX is a new entrant into this space and can change the landscape
with its huge Java adoption. Though Java is considered to be very heavy for client
side virtual machines, still due to its vast adoption base, JavaFX can make a dif-
ference to the developer community.

Finally, it would be inappropriate to complete this technology overview with-
out giving some insights into what is happening with HTML5 itself. With
HTML5 video and audio rendering mechanisms, developers think that this may
come close to replacing the runtimes like Flash and Silverlight. The biggest
advantage is that it will not be necessary to download plug-ins to run the web
application. Developers are looking forward to WebGL standards, which may
define standards for Web application development in future. Only time can tell
who will be the ultimate winner in this space.

References
[1] Vajgel P. Needle in a haystack: efficient storage of billions of photos. http://www.

facebook.com/note.php?note_id=76191543919; [accessed 01.05.09].
[2] Persyn J. Database sharding, Brussels, Belgium: FOSDEM’09; 2009.
[3] By The Numbers: Twitter Vs. Facebook Vs. Google Buzz. http://searchengineland.

com/by-the-numbers-twitter-vs-facebook-vs-google-buzz-36709; [accessed 08.10.11].
[4] Why does Wikipedia use MySQL as data store rather than a NoSQL database? Domas

Mituzas. http://www.quora.com/Why-does-Wikipedia-use-MySQL-as-data-store-rather-
than-a-NoSQL-database; [accessed 08.10.11].

[5] Gulliver I. A new generation of Google MySQL tools. http://flamingcow.dilian.org/
2011/04/new-generation-of-google-mysql-tools.html; [accessed 08.10.11].

[6] Elliott-McCrea K. Using, Abusing and Scaling MySQL at Flickr. http://code.flickr.
com/blog/2010/02/08/using-abusing-and-scaling-mysql-at-flickr/; [accessed 08.10.11].

[7] Very large databases. http://www.vldb.org/; [accessed 08.10.11].
[8] Ozsu M, Valduriez P. Principles of distributed database systems. Englewood Cliffs,

NJ: Prentice-Hall; 1990.
[9] MySQL Reference Architectures for Massively Scalable Web Infrastructure, Oracle

Corp., http://www.mysql.com/why-mysql/white-papers/mysql_wp_high-availability_
webrefarchs.php; [accessed 08.10.11].

[10] Roy R. Shard - A Database Design. http://technology.blogspot.com/2008/07/shard-
database-design.html; [accessed 28.07.08].

References 251

http://www.facebook.com/note.php?note_id=76191543919
http://www.facebook.com/note.php?note_id=76191543919
http://searchengineland.com/by-the-numbers-twitter-vs-facebook-vs-google-buzz-36709
http://searchengineland.com/by-the-numbers-twitter-vs-facebook-vs-google-buzz-36709
http://www.quora.com/Why-does-Wikipedia-use-MySQL-as-data-store-rather-than-a-NoSQL-database
http://www.quora.com/Why-does-Wikipedia-use-MySQL-as-data-store-rather-than-a-NoSQL-database
http://flamingcow.dilian.org/2011/04/new-generation-of-google-mysql-tools.html
http://flamingcow.dilian.org/2011/04/new-generation-of-google-mysql-tools.html
http://code.flickr.com/blog/2010/02/08/using-abusing-and-scaling-mysql-at-flickr/
http://code.flickr.com/blog/2010/02/08/using-abusing-and-scaling-mysql-at-flickr/
http://www.vldb.org/
http://www.mysql.com/why-mysql/white-papers/mysql_wp_high-availability_webrefarchs.php
http://www.mysql.com/why-mysql/white-papers/mysql_wp_high-availability_webrefarchs.php
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://technoroy.blogspot.com/2008/07/shard-database-design.html

[11] Hu W. Better sharding with Oracle. Oracle Openworld 2008. http://www.oracle.com/
technetwork/database/features/availability/300461-132370.pdf; 2008. [accessed
08.10.11].

[12] DeWitt, D, Gray, J. Parallel database systems: the future of high performance database
systems. Commun ACM 1992;35(6):85–98.

[13] Obasanjo D. Building scalable databases: Pros and cons of various database sharding
schemes. http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabase-
sProsAndConsOfVariousDatabaseShardingSchemes.aspx; [accessed 08.10.11].

[14] Database sharding. http://www.codefutures.com/database-sharding; [accessed 08.10.11].
[15] Henderson C. Building Scalable Web Sites: Building, Scaling, and Optimizing the

Next Generation of Web Applications. O’Reilly Media; 1st ed. (May 23, 2006),
ISBN-13: 978-0596102357

[16] Scalebase Architecture. http://www.scalebase.com/resources/architecture/; [accessed
08.10.11].

[17] Spock Proxy – a proxy for MySQL horizontal partitioning. http://spockproxy.
sourceforge.net/; [accessed 08.10.11].

[18] Hibernate Shards. http://www.hibernate.org/subprojects/shards.html; [accessed
08.10.11].

[19] DeCandia G, et al. Dynamo: Amazon’s highly available key-value store. Stevenson,
Washington, USA: SOSP’07; 2007.

[20] Facebook’s New Real-Time Messaging System: HBase To Store 135+ Billion
Messages A Month. http://highscalability.com/blog/2010/11/16/facebooks-new-real-
time-messaging-system-hbase-to-store-135.html; [accessed 08.10.11].

[21] The Underlying Technology of Messages. http://www.facebook.com/note.php?
note_id=454991608919#; [accessed 08.10.11].

[22] Borthakur D. Realtime hadoop usage at facebook – part 1. http://hadoopblog.
blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part.html; [accessed
08.10.11].

[23] Borthakur D. Realtime hadoop usage at facebook – part 2 - workload types. http://
hadoopblog.blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part_28.html;
[accessed 08.10.11].

[24] Bigtable: A Distributed Storage System for Structured Data. OSDI 2006. http://labs.
google.com/papers/bigtable-osdi06.pdf; [accessed 08.10.11].

[25] HBase 0.91.0-SNAPSHOT API. http://hbase.apache.org/docs/current/api/overview-
summary.html; [accessed 08.10.11].

[26] George L. HBase Architecture 101 – Storage. http://www.larsgeorge.com/2009/10/
hbase-architecture-101-storage.html; [accessed 08.10.11].

[27] Package org.apache.hadoop.hbase.mapreduce. http://hbase.apache.org/docs/current/api/
org/apache/hadoop/hbase/mapreduce/package-summary.html#package_description;
[accessed 08.10.11].

[28] Weaver E. Up and Running with Cassandra. http://blog.evanweaver.com/2009/07/06/
up-and-running-with-cassandra/; [accessed 08.10.11].

[29] Zawodny J. Lessons Learned from Migrating 2+ Billion Documents at Craigslist.
http://www.10gen.com/video/mongosf2011/craigslist; [accessed 08.10.11].

[30] Zawodny J. MongoDB live at Craigslist. http://blog.mongodb.org/post/5545198613/
mongodb-live-at-craigslist; [accessed 08.10.11].

[31] Introducing JSON. http://www.json.org/; [accessed 08.10.11].

252 CHAPTER 5 Paradigms for Developing Cloud Applications

http://www.oracle.com/technetwork/database/features/availability/300461-132370.pdf
http://www.oracle.com/technetwork/database/features/availability/300461-132370.pdf
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx
http://www.25hoursaday.com/weblog/2009/01/16/BuildingScalableDatabasesProsAndConsOfVariousDatabaseShardingSchemes.aspx
http://www.codefutures.com/database-sharding
http://www.scalebase.com/resources/architecture/
http://spockproxy.sourceforge.net/
http://spockproxy.sourceforge.net/
http://www.hibernate.org/subprojects/shards.html
http://highscalability.com/blog/2010/11/16/facebooks-new-real-time-messaging-system-hbase-to-store-135.html
http://highscalability.com/blog/2010/11/16/facebooks-new-real-time-messaging-system-hbase-to-store-135.html
http://www.facebook.com/note.php?note_id=454991608919#
http://www.facebook.com/note.php?note_id=454991608919#
http://hadoopblog.blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part.html
http://hadoopblog.blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part.html
http://hadoopblog.blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part_28.html
http://hadoopblog.blogspot.com/2011/05/realtime-hadoop-usage-at-facebook-part_28.html
http://labs.google.com/papers/bigtable-osdi06.pdf
http://labs.google.com/papers/bigtable-osdi06.pdf
http://hbase.apache.org/docs/current/api/overview-summary.html
http://hbase.apache.org/docs/current/api/overview-summary.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/mapreduce/package-summary.html#package_description
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/mapreduce/package-summary.html#package_description
http://blog.evanweaver.com/2009/07/06/up-and-running-with-cassandra/
http://blog.evanweaver.com/2009/07/06/up-and-running-with-cassandra/
http://www.10gen.com/video/mongosf2011/craigslist
http://blog.mongodb.org/post/5545198613/mongodb-live-at-craigslist
http://blog.mongodb.org/post/5545198613/mongodb-live-at-craigslist
http://www.json.org/

[32] JSON Example. http://json.org/example.html; [accessed 08.10.11].
[33] Object Ids. http://www.mongodb.org/display/DOCS/Object+IDs; [accessed 08.10.11].
[34] Mongo DB Java Tutorial. http://www.mongodb.org/display/DOCS/Java+Tutorial;

[accessed 08.10.11].
[35] Introduction to Parallel Programming and MapReduce. http://code.google.com/edu/

parallel/mapreduce-tutorial.html#MapReduce; [accessed 08.10.11].
[36] Dean J, Ghemawat S. MapReduce: A flexible data processing tool. CACM; 2010.
[37] Running Hadoop on Amazon EC2. http://wiki.apache.org/hadoop/AmazonEC2;

[accessed 08.10.11].
[38] Karloff H, Suri S, Vassilvitskii S. A Model of Computation for MapReduce. Sympo-

sium on Discrete Algorithms (SODA); 2010.
[39] Google Cluster Computing, Faculty Training Workshop, Module IV: MapReduce

Theory, Implementation, and Algorithms, Spinnaker Labs, Inc.
[40] Dean JJ, Ghemawat S. MapReduce: Simplified data processing on large clusters. In:

OSDI’04, 6th Symposium on Operating Systems Design and Implementation, Spon-
sored by USENIX, in cooperation with ACM SIGOPS; 2004. p. 137–50.

[41] Lämmel R. Google’s MapReduce programming model—revisited_. Redmond, WA,
USA: Data Programmability Team Microsoft Corp.

[42] Ho R. Pragmatic programming techniques. Blog. http://horicky.blogspot.com/2010/08/
designing-algorithmis-for-map-reduce.html; [accessed 08.10.11].

[43] Graph processing in MapReduce. http://horicky.blogspot.com/2010/07/graph-
processing-in-map-reduce.html and http://horicky.blogspot.com/2010/07/google-pregel-
graph-processing.html; [accessed 08.10.11].

[44] Programming Flex 3: The comprehensive guide to creating rich internet applications
with Adobe Flex. O’Reilly Publications; 2008.

[45] Microsoft Silverlight 4: Step by Step. O’Reilly Publications; 2010.

References 253

http://json.org/example.html
http://www.mongodb.org/display/DOCS/Object+IDs
http://www.mongodb.org/display/DOCS/Java+Tutorial
http://code.google.com/edu/parallel/mapreduce-tutorial.html#MapReduce
http://code.google.com/edu/parallel/mapreduce-tutorial.html#MapReduce
http://wiki.apache.org/hadoop/AmazonEC2
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/07/graph-processing-in-map-reduce.html
http://horicky.blogspot.com/2010/07/graph-processing-in-map-reduce.html
http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html
http://horicky.blogspot.com/2010/07/google-pregel-graph-processing.html

This page intentionally left blank

CHAPTER

6Addressing the Cloud
Challenges

INFORMATION IN THIS CHAPTER:

• Scaling Computation

• Scaling Storage

• Multi-Tenancy

• Availability

INTRODUCTION

There are multiple key technical challenges that any cloud platform or application
needs to address in order to truly provide a utility-like computing infrastructure.
Some techniques used by current platforms to address the issue of scalability at
the IaaS, PaaS and SaaS levels were discussed in Chapters 2, 3 and 4, respec-
tively. Chapter 8 discusses the various features supported by current platforms to
provide fine-grained monitoring of a cloud platform and infrastructure. This chap-
ter describes in more detail, additional approaches that can be used to address the
cloud challenges, and also provides some technical fundamentals needed to com-
prehend the limitations of the different approaches used. Three critical technical
challenges posed by cloud computing are addressed here, namely:

1. Scalability: Ability to scale to millions of clients simultaneously accessing the
cloud service,

2. Multi-Tenancy: Ability to provide the isolation as well as good performance to
multiple tenants using the cloud infrastructure, and

3. Availability: An architecture that ensures that the infrastructure as well as
applications are highly available regardless of hardware and software faults.

The scalability challenges needs to be addressed both at the computational as
well as the storage access level. The first section details some architectures for lin-
early scaling the compute capacity by just adding more servers. Key theoretical
concepts that help a developer to appreciate the performance bottlenecks that may
arise in an application due to concurrent data access and solutions that one can
employ to address them are discussed in the second section. The third section

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00006-8
© 2012 Elsevier, Inc. All rights reserved.

255

http://dx.doi.org/10.1016/B978-1-59749-725-1.00006-8

deals with solutions and approaches to address the issue of enabling multi-tenancy
and the fourth section describes architectures to ensure highly available
cloud-hosted applications.

SCALING COMPUTATION
As discussed in earlier chapters, on-demand scaling of computation is one of the
critical needs of any cloud computing platform. Compute scaling can be either
done at the infrastructure level or platform level. At the infrastructure level, it is
about increasing the capacity of the compute power, while at the platform level,
the techniques are mainly to intelligently manage the different client requests in a
manner that best utilizes the compute infrastructure without requiring the clients
to do anything special during peaks in demand.

Scale Out versus Scale Up
There are fundamentally two main ways of scaling compute resources – known as
scale up and scale out. Scale up or vertical scaling is about adding more resources
to a single node or a single system to improve performance – such as addition of
CPUs, use of multi-core systems instead of single-core or adding additional memory.
The focus here is to make the underlying compute system more powerful. The more
powerful compute resource can now be effectively used by a virtualization layer to
support more processes or more virtual machines – enabling scaling to many more
clients. In order to support on-demand scaling of the cloud infrastructure, the system
should be able to increase its compute power dynamically without impacting the plat-
form or application executing over it. Unless a system is virtualized, it is generally
not possible to increase the capacity of a compute system dynamically without bring-
ing down the system. Detailed information about virtualization technology and
approaches used for virtualization is given in Chapter 9. Systems that are scaled up
are shared memory systems such as symmetric multiprocessor systems. Examples of
scale up machines are IBM POWER5 machine and HP Itanium Superdome servers.
The advantage of scale up systems is that the programming paradigm is simpler,
since it does not involve distributed programming, unlike scale-out systems.

Scale out or horizontal scaling, on the other hand, is about expanding the com-
pute resources by adding a new computer system or node to a distributed applica-
tion. This distributed application is designed in such a way as to effectively use
new compute resources added to the system. A web server (like Apache) is a typical
example for such a system. In fact, given that most cloud applications are service-
enabled, they need to be developed to expand on-demand using scaling-out techni-
ques. The advantage of scale out systems is that commodity hardware, such as disk
and memory, can be used for delivering high performance. A scale out system such
as interconnected compute nodes forming a cluster can be more powerful than a
traditional supercomputer, especially with faster interconnect technologies like

256 CHAPTER 6 Addressing the Cloud Challenges

Myrinet and InfiniBand. Scale out systems will essentially be distributed systems
with a shared high-performance disk storage used for common data. Unlike scale
up systems, in order to leverage full power of scale out systems, there should be an
effort from the programmer to design applications differently. Many design
patterns exist for applications designed for scale out machines – examples include
MapReduce, Master/Worker and TupleSpace, to name a few.

A study from Michael Maged, et al. [1] from IBM does a detailed comparison of
scale out and scale up systems for search applications. They conclude that scale-out
solutions have much better performance and price/performance over scale up systems.
This is because a search application essentially consists of independent parallel
searches, which can easily be deployed on multiple processors. Scale out techniques
can be employed at application-level as well. For example, a typical web search
service is scalable where two client query requests can be processed completely as
parallel threads. The challenge in scale out systems, however, is the complex
management of the infrastructure, especially when the infrastructure caters to
dynamic scaling of resources. Additionally, as noted, applications that do not consist
of independent computations are difficult to scale out.

Amdahl’s Law
As noted in the earlier paragraph, it is not always possible to get better perfor-
mance by just putting in more compute resources. Adding one more compute
node does not necessarily double the performance of the application. The amount
of speed up is limited by the extent to which the algorithm consists of parallel
computations, or the inherent parallelism in the application. A well-known theory
that explains this concept is Amdahl’s Law. This law says that the maximum
speedup that an application can achieve is limited by the portions of the applica-
tion that need to execute sequentially. If α is the fraction of an application that
needs sequential calculation, and 1 − α can be parallelized, then the maximum
speedup achieved by using P processors is given by:

1

α+ 1− α
P

Even if 80% of the program can be run in parallel, but 20% needs to be exe-
cuted sequentially (for example, to collect results of the parallel computation and
display results), then the maximum speedup that one can achieve on 10 processors
is only 1/0.28 = 3.6 (check with α = 0.2).

Given the limitation of performance shown by Amdahl’s Law, cloud applica-
tions need to be carefully designed in order not to be hit by the previously men-
tioned constraint. One method of achieving parallelism is to use different
processes or compute nodes for requests from different clients. So, essentially
each request is processed in parallel and to completion. The parallelism is there-
fore coming in due to parallel requests. If client requests are independent of each

Scaling Computation 257

other, α can be close to 0 and speedup = P, the full power of the compute
resources can be used! If peak load is achieved, then the solution is to increase
the physical resources (P) by just adding more compute resources. As noted
previously, this model works well for applications such as search, where there is
little interaction between client requests. Of course, it is not usually possible to
make α equal to 0, as the requests will be served using shared data structures (say
for web index). There again, techniques to enable multiple simultaneous reads
(described in Chapter 5 under data partition) can be used. Cloud applications are
therefore designed to use service-oriented architectures so that multiple client
requests can be processed independently (as far as the service logic enables).

An additional approach could be to look for parallelism within a client request.
Consider a Facebook-like application, where if a user updates his status, that could
require updating the walls of all his friends. Part of the application (updating the user
status and getting the friend list) is sequential, but the rest can be done in parallel.
The scalability of a cloud application now is purely limited by the efficiency of
request scheduling on the available compute hardware and efficient access to external
resources (like storage, database) that the service may need to complete the request.

Scaling Cloud Applications with a Reverse Proxy
When we have a scale out architecture with a cloud application executing each
client request on different compute nodes, one problem that needs to be addressed
is that of service orchestration. Simplistically stated, the different nodes that the
cloud application executes on should be transparent to the client and a single ser-
vice end point needs to be published. This section describes a common way of
accomplishing this using a reverse proxy.

A reverse proxy is basically an HTTP proxy server that retrieves content from
one or more servers and behaves like an originating server for the client. This is
unlike a forward proxy that enables multiple browsers to access external web ser-
vers. For example, hp.com can be accessed using multiple forward proxy servers
that HP employees use in their browsers to access the Internet. However, hp.com
will have a single reverse proxy server which receives requests from the Internet,
and distributes them transparently to multiple web servers that will be serving the
portal content. Since reverse proxies are frontends, they can be used for providing
security through application firewall and data encryption, for optimizing the cli-
ent-server communication, as well as balancing server load by efficient scheduling
of the client requests on the servers.

A simple schematic of using a reverse proxy is shown in Figure 6.1. The
browser accesses a web site, say http://xyz.com. The reverse proxy is hosted on
the machine with the DNS name as xyz and is actually the front-facing server for
the browsers. It, however, distributes the client request to different web applica-
tion servers at the back-end (normally referred to as upstream servers) to get the
request fulfilled. To scale to a larger number of clients, only a few more upstream
servers need to be added behind the reverse proxy.

258 CHAPTER 6 Addressing the Cloud Challenges

http://www.hp.com
http://www.hp.com
http://xyz.com

The reverse proxy has to be really lightweight and should not become an overhead
or bottleneck to server requests.

Nginx is one such reverse proxy which claims to be hosting more than 20 million
web sites, at the time of writing of this book [2]. Nginx uses a simple round robin
scheduler to forward client requests. There is also an option to use a hash-based
scheduling to choose an upstream server based on hashing a configurable variable –
that can be the request URL, incoming HTTP request headers or some combination
of those.

A sample configuration for the Nginx server is shown in the code segment
NGINX Configuration. The section called upstream lists the different virtual web
servers that are configured at the backend. All one needs to do to scale the system
is to add more servers and add those IP addresses in the upstream section. For
detailed practical instructions to set up and use Nginx, the readers are referred to
detailed cookbooks available on using Nginx for a practical configuration [3].

NGINX CONFIGURATION
user cloud-user;
worker_processes 1;
error_log /var/log/nginx/error.log;
pid /var/run/nginx.pid;
events {

worker_connections 1024;
}
http {

include /etc/nginx/mime.types;

Reverse
proxy

Requests from
client to a cloud-

hosted
application

Client
applications Proxied requests

Cloud-hosted scale-
out application

Upstream
servers

FIGURE 6.1

Schematic diagram showing the configuration with a reverse proxy.

Scaling Computation 259

default_type application/octet-stream;
access_log /var/log/nginx/access.log;
sendfile on;
keepalive_timeout 65;
tcp_nodelay on;
gzip on;
server {

listen 80;
server_name localhost;
access_log /var/log/nginx/localhost.access.log;
location / {

proxy_pass http://one_loadbalancer;
}

}
upstream sample_loadbalancer {

server 10.1.1.3:80 ;
server 10.1.1.4:80 ;
server 10.1.1.5:80 ;
server 10.1.1.6:80 ;

}
}

If the Nginx server is configured as a gateway with two network cards, it can
also be used to scale out the servers to two different networks as well [4]. In fact,
a very useful configuration is when one of those networks is inside an enterprise
(private network) and the other is a public cloud – leading to a configuration that
is one way of implementing a hybrid cloud. A detailed example of this is
presented in the OpenNebula section.

Hybrid Cloud and Cloud Bursting: OpenNebula
Hybrid cloud is a combination of private and public clouds enabling expansion of
local infrastructure to commercial infrastructure on a need basis. Using a hybrid
cloud, an organization can leverage existing infrastructure available in-house and
seamlessly include or supplement additional resources from public clouds based
on demand. A hybrid cloud is most cost effective for the cloud user as it ensures
good utilization of existing infrastructure. It enables Cloud Bursting of the
private cloud by allowing the addition of extra capacity to a private infrastructure
by borrowing from a public cloud (Figure 6.2).

This configuration can be extended to Cloud Federation to share infrastructure
with collaborators and Cloud Aggregation to provide a much larger cloud
infrastructure using multiple clouds. HP CloudSystem Enterprise is a commercial
offering from Hewlett-Packard for hybrid clouds. Amazon’s Virtual Private Cloud
(VPC) also provides a hybrid cloud using a VPN connection between Amazon EC2
and a private cloud. OpenNebula is a popular open source cloud platform that is
designed to support hybrid cloud and its internal details are described next.

260 CHAPTER 6 Addressing the Cloud Challenges

OpenNebula
OpenNebula is a distributed virtual machine manager that provides a virtualized
infrastructure across multiple cloud platforms [5]. This open source project started
in 2005 with the first release being made in March 2008, and has been seeing
thousands of downloads per month ever since. The key design of OpenNebula is its
modular system that integrates well with multiple heterogeneous cloud infrastruc-
tures and data centers, as shown in Figure 6.3. Figure 6.3 also shows the four basic
layers that exist in the OpenNebula architecture. At the highest level are the EC2
and OCCI [6] layers. These are high-level APIs that allow OpenNebula to support
applications that use Amazon EC2 and Open Cloud Computing Interface (OCCI)
APIs, as well as interoperate with other clouds that support EC2 and OCCI. Below
that is the core OpenNebula API, which provides the main OpenNebula functional-
ity of virtualization. Below that are the resource management APIs and drivers,
which abstract out the details of the resource management and allow OpenNebula
to support heterogeneous virtualization, storage and networks. For example, the
Virtualization Manager (VM) API has pluggable virtualization drivers to support
different types of virtualization; the VMWare virtualization driver supports
VMWare virtualization, and the Xen virtualization driver supports Xen virtualiza-
tion. However, the VM APIs present a common abstraction to the core OpenNebula
API, allowing it to support both types of virtualization. Similarly, the transfer man-
ager (TM) API abstracts out the storage subsystem, which can support NFS,

Local administrator
interface

Cloud user interface

Scheduler Cloud service

Virtual infrastructure manager

CloudVirtualization Storage Network

Local infrastructure

Public
cloud

Local infrastructure

FIGURE 6.2

A hybrid cloud.

Scaling Computation 261

MooseFS1 and other storage protocols. The Auth API provides support for security
and authentication, and the Network Manager API (NM API) allows for network
management.

In terms of features, OpenNebula implements the EC2 Query API as well as
the OCCI-OGF interface, enabling both custom and standard compliant cloud
infrastructures to be integrated. For the on-premise infrastructure, it provides easy
integration with any cluster schedulers (Local Resource Managers) such as SGE,
LSF, and OpenPBS and Condor [7], enabling better use of local resources. The
system has interfaces to allocate virtual machines and network elements, migrates
virtual machines across processors, and has several user management and image
management functionalities. It allows a physical cluster to dynamically execute
multiple virtual clusters, enabling better on-demand resource provisioning, cluster
consolidation and cluster partitioning. The allocation of physical resources to vir-
tual nodes could also be dynamic dependent on its compute demands as migration
functionality provided by existing VMMs can be used to move virtual machines
to other processes, supporting heterogeneous workloads. Like any other IaaS
infrastructure, a portal interface called OpenNebula SunStone is also available.

XML RPC

TM/NM/VM/Auth APIs

Drivers
TM/NM/VM/Auth Drivers

SQL

EC2 support

EC2 Tools

EC2 Query

EC2 server

OCCI support

OCCI CLI

REST OCCI

OCCI server

SchedulerOCA (Java + Ruby)

Open nebula

Legend

Tools

APIs

Components

One account

FIGURE 6.3

Different interfaces provided by OpenNebula.

1MooseFS is a highly scalable centralized metadata distributed file system, described in detail at
www.moosefs.org. Centralized metadata DFSes are described in Chapter 9.

262 CHAPTER 6 Addressing the Cloud Challenges

www.moosefs.org

OpenNebula can be used in conjunction with a reverse proxy to form a cloud
bursting hybrid cloud architecture with load balancing and virtualization support
provided by OpenNebula (Figure 6.4) [8]. The OpenNebula VM controls server
allocation in both the EC2 cloud as well as the OpenNebula cloud, while the
Nginx proxy to which the clients are connected distributes load over the web ser-
vers both in EC2 as well as the OpenNebula cloud. In addition to web servers,
the EC2 cloud also has its own Nginx load balancer.

Much research work has been developed around OpenNebula. For example,
the University of Chicago has come up with an advance reservation system called
Haizea Lease Manager. IBM Haifa has developed a policy-driven probabilistic
admission control and dynamic placement optimization for site level management
policies called the RESERVOIR Policy Engine [9], Nephele is an SLA-driven
automatic service management tool developed by Telefonica and Virtual Cluster
Tool for atomic cluster management with versioning with multiple transport
protocols from CRS4 Distributed Computing Group.

Design of a Scalable Cloud Platform: Eucalyptus
In addition to OpenNebula, Eucalyptus is also an important open source cloud
platform. The internal details and design of Eucalyptus are as follows. The descrip-
tion focuses on the use of virtualization technology to implement a complete
cloud platform. EUCALYPTUS (for Elastic Utility Computing Architecture
Linking Your Programs To Useful Systems) enables implementation of cloud

Open nebula

Web servers
Virtualization

manager

EC2

Nginx proxy
web server

Nginx proxy

Clients

FIGURE 6.4

OpenNebula with reverse proxy for cloud bursting.

Scaling Computation 263

systems over existing infrastructure for both private and hybrid clouds. A platform
built using Eucalyptus supports Amazon AWS REST and SOAP interfaces, thus
enabling clients that are intended for Amazon EC2 to work seamlessly over existing
on-premise hardware.

Every machine that needs to become a part of the Eucalyptus cloud runs the
Node Controller that controls the execution, monitoring and termination of virtual
machines on the node (Figure 6.5). A Cluster Controller (CC) forms the front
end for each cluster and manages and schedules the execution of the virtual
machine on each node. There is also a Storage Controller (SC) called Walrus
that provides block storage services with the same interface as Amazon EBS and
S3 and can be used to store and retrieve virtual machine images and also applica-
tion data. The key interface for users and administrators is the Cloud Controller
(CLC), which queries the different nodes and makes broad decisions about the
virtualization setup, and executes those decisions through cluster controllers and
node controllers. These modules are summarized later in this chapter. For more
detail, please see the white papers from Eucalyptus, Inc. [10, 11].

A Node Controller (NC) executes on every node that is part of the
cloud infrastructure and designated to host a virtual machine instance. The NC
answers the queries from the Cluster Controller using the system APIs of the

Management
platform

Virtualized networking

Cloud controller

Virtualized compute
Virtualized storage

Node controller

Cluster
controller 1

Cluster 1

Cluster
controller 2

Cluster 2 Storage

Walrus

NC NC NC

NC NC NC NC

FIGURE 6.5

A schematic of key Eucalyptus modules.

264 CHAPTER 6 Addressing the Cloud Challenges

operating system of the node and the hypervisor to get system information, such
as number of cores, memory size, available disk space, state of the VM instance,
etc. The APIs supported by an NC are runInstance, terminateInstance,
describeResource, describeInstance, etc. Only authorized entities are allowed
to make these API calls (using the standard mechanism of web services). To start
a new VM instance, the NC makes a local copy of the image files, namely the
kernel, the root file system and the ramdisk image from a remote image reposi-
tory. It then creates a new end point in the virtual network overlay (described in
the next paragraph) and requests the local hypervisor to boot from that instance.
To stop an instance, the NC requests the hypervisor to stop the instance, tears
down the virtual network end point and cleans up all the files in the root file sys-
tem. So, the application has to use an external persistent storage to save the result
of the execution.

The Cluster Controller runs on a system that is potentially on two networks –
one network that connects it to the NCs forming the cluster and the other network
to connect to the Cloud Controller. The functional APIs of CC are similar to NC,
but they work on a set of nodes rather than specific nodes. The CC schedules
incoming instance execution requests onto specific nodes, controls the instance vir-
tual network overlay, and collects report information about a set of NCs. When a
CC receives a set of instances to execute, it first checks the resource availability
with each NC and schedules the instance on the first node that satisfies the resource
criteria (such as CPU cores, memory, disk, etc) for executing the instance.

The CC is primarily responsible for the setup and tear down of the virtual network
overlay that connects the different virtual machines. Since the application on each
VM is potentially able to acquire MAC addresses, system IP addresses, and perform
several supervisor privileged operations, it is mandatory to have another layer of vir-
tualization to ensure security of other applications. While complete network level
access will be provided for applications running on individual nodes, the CC should
be able to fully manage and control the VM networks, providing VM traffic isolation,
the definition of firewall rules between logical sets of VMs, and the dynamic assign-
ment of public IP addresses to VMs at boot and run-time. The users will be allowed
to boot-time attach their VMs to a logical network, which is assigned a unique
VLAN (virtual LAN) tag and unique IP subnet (private IP range). This way, each set
of nodes within a specific names network will be able to communicate among them-
selves, but are isolated from other sets of VMs. The CC can then be used as a router
between VM subnets, and blocks traffic between VM networks (by default). The
users will still have control of the firewall rules for their specific VM network. In
order to make the network accessible from public IP addresses, users can request
public IP addresses be assigned to certain VMs among their VM set. This access is
managed using Network Address Translation (NAT) with dynamic destination
NAT and source NAT address for public IP to private IP mapping, which can be
defined either at boot-time or runtime. When VMs are distributed across clusters, the
cluster front-ends are linked with a tunnel and all the VLAN tagged packets are
tunneled from one cluster to another, either over TCP or UDP.

Scaling Computation 265

The data storage service of Eucalyptus is called Walrus. Walrus provides an
interface compatible with Amazon S3 (described in Chapter 2) and is built using
standard web services technologies (Axis2, Mule) and provides both REST and
SOAP interfaces of S3. This module provides persistent data support for the
instances that execute on the nodes – both for the VM image as well as storing/
streaming of application data.

The role of Walrus is very critical to ensure scalability of the cloud applica-
tion, since concurrent data access from multiple instances can potentially get
blocked and delay one client request due to another. Walrus therefore does not
provide locking for object writes. However, users are guaranteed consistency of
write and read. If a write to an object is encountered while the previous write to
the same object is in progress, the previous write is invalidated. Walrus authenti-
cates and verifies a user by checking against the access control lists for the object
that was requested and responds with a MD5 checksum of the object. Writes and
reads are streamed over HTTP. Researchers can customize the authentication and
streaming protocols of Walrus, as well.

The Cloud Controller is a set of web services that provides (a) system-wide
arbitration of resource allocation, (b) governing of persistent user and system data,
and (c) handling authentication and protocol translation for user-visible interfaces.
A System Resource State (SRS) is maintained with data coming in from CC and
NCs of the system. When a user’s request arrives, the SRS is used to make an
admission control decision for the request based on service-level expectation. To
create a VM, the resources are first reserved in the SRS and the request is sent
downstream to CC and NC. Once the request is satisfied, the resource is com-
mitted in the SRS, else rolled back on failure. A production rule system uses this
information in the SRS and ensures that the SLAs are satisfied through an event-
based design. Events such as timer events, network topology changes and memory
allocations are used to modify the resource request and change system state as
needed. The Data Services provided by CLC handle creation, modification, query
and storage of stateful system and user data. Lastly, a set of web services provides
entry points for user requests using a variety of interfaces (Amazon S3 and EC2),
management and monitoring services for web console.

Eucalyptus is a very interesting work in cloud platforms as it enables researchers
and technologists to get started not only in setting up new cloud platforms over exist-
ing infrastructures, but also to start researching and experimenting with new algo-
rithms for scheduling resources, differing service level agreements and policies for
allocation. It can be deployed just on a single laptop or on huge clusters of servers.

ZooKeeper: A Scalable Distributed Coordination System
Scale-out architectures work well if the client requests can be completed as inde-
pendent processes and hence can be scheduled on different servers (or virtual
machines). However, some applications may require multiple dependent processes
to work together to solve a client request, using a messaging bus or database

266 CHAPTER 6 Addressing the Cloud Challenges

for co-ordination. Co-ordination of such distributed processes can be a very
challenging task, as the different processes do not see the same shared data. This
section describes a popular Open Source Apache project called ZooKeeper, which
is a highly available and reliable coordination system [12, 13, 14].

ZooKeeper is a centralized coordination service that can be used by distributed
applications to maintain configuration information, perform distributed synchroni-
zation, and enable group services. The ZooKeeper service implements efficient pro-
tocols for consensus and group management to give a simple abstraction for
applications to perform leader election and group membership in a scalable manner.
It can be used to just maintain a single configuration across the whole system –
which turns out to be a very nontrivial functionality to achieve with linear scalabil-
ity. ZooKeeper can also be used for event notification, locking and to implement a
queuing system. An overview of ZooKeeper with an example usage of ZooKeeper
API is next described.

Overview of ZooKeeper
ZooKeeper uses a shared hierarchical name space of data registers (called znodes)
to coordinate distributed processes. Znodes give an abstraction of a shared file
system but are more like a distributed, consistent shared memory that is hierarchi-
cally organized like a file system. ZooKeeper provides high throughput, low
latency, highly available, strictly ordered access to the znodes. For reliability,
three copies of the Zookeeper can be run so that it does not become a single point
of failure. As it provides strict ordering, complex synchronization primitives can
be implemented at the client.

ZooKeeper provides a name space very similar to a standard file system. Every
znode is identified by a name, which is a sequence of path elements separated by
a slash ("/"), and every znode has a parent except the root ("/"). A znode cannot
be deleted if it has any children (like a folder cannot be deleted if it has files
within it). Every znode can have data associated with it and is limited to the
amount of data that it can have to kilobytes. This is because the ZooKeeper is
designed to store just coordination data, such as status information, configuration,
location information, and so on.

The ZooKeeper service maintains an in-memory image of the data tree that is
replicated on all the servers on which the ZooKeeper service executes. Only trans-
action logs and snapshots are stored in a persistent store, enabling high through-
put. As changes are made to the znodes (during application execution), they are
appended to the transaction logs. When the transaction log grows big, a snapshot
of the current state of all znodes is taken and is written to the persistent store
(filesystem). Further, each client connects only to a single ZooKeeper server and
maintains a TCP connection, through which it sends requests, gets responses, gets
watch events, and sends heart beats. If the TCP connection to the server breaks,
the client will connect to an alternate server. The client only needs to set up a ses-
sion with the first ZooKeeper server; if it needs to connect to another server, this
session will get reestablished automatically.

Scaling Computation 267

All updates made by ZooKeeper are totally ordered. It stamps each update with a
sequence called zxid (ZooKeeper Transaction Id). Each update will have a unique
zxid. Reads and writes are only ordered with respect to updates; i.e., they are stamped
with the last zxid processed by the server (last update). To achieve distributed syn-
chronization, ZooKeeper implements a variant of the classic part time parliament or
Synod protocol by Leslie Lamport called the Zab (ZooKeeper Atomic Broadcast)
protocol, which is somewhat similar to Paxos Multi-Decree protocol [15] proposed
by Butler Lampson, but is a two-phase commit protocol [16].

It is easy to understand the functionality of ZooKeeper if one thinks of it as a
shared file system. The clients just read and write files (though of very small size).
Read requests from a client are processed locally at the ZooKeeper server to which
the client is connected, while write requests are forwarded to other ZooKeeper
servers. Write requests need to go through a consensus protocol to ensure that the
correct written copy is maintained. Sync requests are also forwarded to other servers
but do not go through the consensus protocol. If the read request registers a watch on
a znode, that watch is also tracked only locally at the ZooKeeper server. Thus, if the
application has many read requests, then there is no impact on scalability, while write
requests can reduce the performance for a large number of servers. Some details of
the usage of ZooKeeper API is given next.

Using ZooKeeper API
To start a ZooKeeper server, do the following:

java -jar zookeeper-3.3.3-fatjar.jar server 2181 /tmp/zkdata

The previous command line starts the ZooKeeper server on port 2181 and
instructs use of /tmp for storing its data. In production use, many instances of the
ZooKeeper server are executed possibly in a cluster, and a more detailed config-
uration (which does not use a common /tmp folder) is as follows:

java -jar zookeeper-3.3.3-fatjar.jar server server1.cfg &

To study the APIs, an example from the ZooKeeper recipe [17] has been chosen.
This example implements a barrier, which is a synchronization point in a parallel and
distributed program. A barrier for a group of processes means that each process
must stop at that point and cannot continue until the rest of the processes reach the
same point. Distributed systems use barriers to block processing of a set of nodes
until a condition is met, at which time all the nodes are allowed to proceed.

Barriers are implemented in ZooKeeper by designating a barrier node. If the
barrier node exists (conceptually, if the file exists), then the barrier exists and the
process needs to stop. The following are the sequence of calls that the application
client needs to make.

1. Client calls the ZooKeeper API’s exists() function on the barrier node, with
watch set to true.

2. If exists() returns false, the barrier node has been removed and so the client
proceeds.

268 CHAPTER 6 Addressing the Cloud Challenges

3. Else, if exists() returns true, the clients wait for a watch event from
ZooKeeper for the barrier node.

4. When the watch event is triggered, the client reissues the exists() call, again
waiting until the barrier node is removed.

The general idea of the implementation is to have a barrier node that serves
the purpose of being a parent for individual process nodes. Suppose that we
call the barrier node "/b1". Each process "p" then creates a node "/b1/p".
Once enough processes have created their corresponding nodes, joined pro-
cesses can start the computation. The barrier is in place if the barrier node
exists.

The following is the Java code to implement a barrier using ZooKeeper API:

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.util.List;
import java.util.Random;

import org.apache.zookeeper.CreateMode;
import org.apache.zookeeper.KeeperException;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.Watcher;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.ZooDefs.Ids;
import org.apache.zookeeper.data.Stat;

public class Barrier implements Watcher {

static ZooKeeper zk = null;
static Integer mutex;

String root;

/**
* Barrier constructor
*
* @param address
* @param root
* @param size
*/
Barrier(Zookeeper zk, String root, int size) {

this.root = root;
this.size = size;

// Create barrier node
if (zk != null) {

try {
Stat s = zk.exists(root, false);
if (s == null) {

Scaling Computation 269

zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE,
CreateMode.PERSISTENT);

}
} catch (KeeperException e) {

System.out
.println("Keeper exception when instantiating
queue: "

+ e.toString());
} catch (InterruptedException e) {

System.out.println("Interrupted exception");
}

}

// My node name
try {

name = new String(InetAddress.getLocalHost()
.getCanonicalHostName().toString());

} catch (UnknownHostException e) {
System.out.println(e.toString());

}

synchronized public void process(WatchedEvent event) {
synchronized (mutex) {

//System.out.println("Process: " + event.getType());
mutex.notify();

}
}

/**
* Join barrier
*
* @return
* @throws KeeperException
* @throws InterruptedException
*/

boolean enter() throws KeeperException, InterruptedException{
zk.create(root + "/" + name, new byte[0],
Ids.OPEN_ACL_UNSAFE,

CreateMode.EPHEMERAL_SEQUENTIAL);
while (true) {

synchronized (mutex) {
List<String> list = zk.getChildren(root, true);

if (list.size() < size) {
mutex.wait();

} else {
return true;

}
}

}

270 CHAPTER 6 Addressing the Cloud Challenges

public static void main(String args[]) {

// Create a ZooKeeper object
try {

System.out.println("Starting ZK:");
zk = new ZooKeeper(address, 3000, this);
mutex = new Integer(−1);
System.out.println("Finished starting ZK: " + zk);

} catch (IOException e) {
System.out.println(e.toString());
zk = null;

}

// Do some processing which is independent of other processes.

// Now, client needs to synchronize
Barrier b = new Barrier(zk, "/b1", new Integer(args[2]));
try{

boolean flag = b.enter();
System.out.println("Entered barrier: " + args[2]);
if(!flag) System.out.println("Error when entering the
barrier");

} catch (KeeperException e){

} catch (InterruptedException e){

}

try{ // Cleanup
zk.delete(root + "/" + name, 0);

} catch (KeeperException e){

} catch (InterruptedException e){

}

// Process rest of the distributed code

}

The main method creates an object of ZooKeeper class and keeps that in a
static variable. When the application needs to enter a barrier, a Barrier object is
created. The enter() method ensures that all the required number of processes
come to this method in their respective processes and wait, using mutex.wait().
When the getChildren returns all the processes, then the mutex is released. The
last process which comes to this barrier will release the barrier and only then will
all the processes be released to continue activity.

ZooKeeper provides a very simple way to implement barrier synchronization,
without which a lot of messages need to pass around to the processes. The reader
should note that, although the semantics does look as if the distributed processes
are synchronizing around creation and deletion of files in a common share, intern-
ally it is NOT happening that way. These files are NOT stored in any common

Scaling Computation 271

file system but are maintained in in-memory data structures. The consensus
algorithm implemented by ZooKeeper ensures that the synchronization is very
efficient and scalable. This is exemplified by the fact that Apache uses ZooKeeper
to coordinate distributed MapReduce processes in Hadoop.

SCALING STORAGE
This section provides some fundamental concepts needed to address the scalability
challenge while using a common data store across application instances. In
Chapter 5, various ways of partitioning and replicating the data have been discussed
and those enabled one to scale beyond the throughput and capacity limitations of
single storage systems. However, the chapter did not deal with the consistency
problems of keeping the data in the various partitions [18]. In the Pustak Portal
example, it was assumed that the Total_Bought, which represents the total value of
books bought by a customer, can be kept consistent with the transactions in the
Book Sales data. This is achieved by creating transactions that update the Total_
Bought data whenever a new sale occurs. However, if data is at cloud scale, these
two databases may be stored on separate storage systems. If a network partition
occurs, it may not be possible to update the Total_Bought data each time a sale
occurs.

Consistency and availability problems, such as those described earlier, are
considered in more detail in this section. First, the section reviews the CAP
theorem, which was first conjectured by Brewer in [19], and proved in Lynch
and Gilbert [20]. The CAP theorem implies that consistency guarantees in
large-scale distributed systems cannot be as strict as those in centralized sys-
tems. Specifically, it suggests that distributed systems may need to provide
BASE guarantees instead of the ACID guarantees provided by traditional data-
base systems [21]. Systems that are eventually consistent form an important
subset of such systems [22]. Following this, we illustrate these principles by
considering how this can be handled for the Pustak Portal example using differ-
ent database and NoSQL storage systems. Finally, since this is an evolving area
of research, we summarize some counter-views on the significance of the CAP
theorem.

CAP Theorem
The CAP theorem states that no distributed system can provide more than two of the
following three guarantees: Consistency, Availability, and Partitioning-tolerance.
Here, consistency is defined as in databases; i.e., if multiple operations are
performed on the same object (which is actually stored in a distributed system), the
results of the operations appear as if the operations were carried out in some
definite order on a single system. For example, if four operations O, P, Q, and R

272 CHAPTER 6 Addressing the Cloud Challenges

are executed, it would never be the case that Q would see the results as if the first
two operations were executed in the order O-followed-by-P, while R would see the
results as if the first two operations were executed in the order P-followed-by-O.
Availability is defined to be satisfied if each operation on the system (for example, a
query) returns some result. The system provides partitioning-tolerance if the system
is operational even when the network between two components of the system is
down. This result has been formally proved by Lynch et al. [20].

Since distributed systems can satisfy only two of the three properties due to the
CAP theorem, there are three types of distributed systems [19]. CA (Consistent,
Available) systems provide consistency and availability, but cannot tolerate net-
work partitions. An example of a CA system is a clustered database, where each
node stores a subset of the data. Such a database cannot provide availability in
the case of network partitioning, since queries to data in the partitioned nodes
must fail. CA systems may not be useful for cloud computing, since partitions
are likely to occur in medium to large networks. Note that partitioning may also
include the case where the message latency is very high, so that the synchroniza-
tion time becomes very high, effectively making it impossible to maintain consis-
tency [23]. Hence, the other two types of systems are considered in the following
sections.

CAP Theorem Example
To understand the constraints arising from large-scale distributed data, consider the
following example, which parallels the usual method of proof. Assume that the Pus-
tak Portal data from Chapter 5 is stored in the system illustrated in Figure 6.6, and
that the customer data from Table 5.1 in Chapter 5 is partitioned among the four
servers A,B,C,D. Further assume that the data in A, B, C are replicated in D for

Client 2
D

A
B

C

Client 1

When not partitioned

When partitioned

CP system

AP system

Client 1: Total_Bought = $5,665

Client 1: Total_Bought = $5,665

Client 1: Total_Bought = $5,665

Client 2: Total_Bought = $5,665

Client 2: Total_Bought = Unavailable

Client 2: Total_Bought = $5,500

FIGURE 6.6

Behavior of CP and AP systems.

Scaling Storage 273

availability. Consider the case where both Client 1 and Client 2 want to find the
value of Total_Bought for customer 38876.

If there is no network partitioning, all servers are consistent, and the value
seen by both clients is the correct value (say $5,665). However, if the network is
partitioned as shown in Figure 6.6, it is no longer possible to keep all the servers
consistent in the face of updates. There are then two choices. One choice is to
keep both servers up, and ignore the inconsistency. This leads to AP (Available,
Partition-tolerant) systems where the system is always available, but may not
return consistent results. In this case, the two clients could get differing values for
Total_Bought; Client 1 may see the correct value ($5,665) while Client 2 may
see a stale value (say $5,500). The other possible choice is to bring one of the
servers down, to avoid inconsistent values. This leads to CP (Consistent, Parti-
tion-tolerant) systems where the system always returns consistent results, but
may be unavailable under partitioning. If server D is brought down (which would
typically happen, since the other partition has the majority of the servers) Client 1
may get the correct value, but Client 2 may not see any response. Recall again
that partitioning may also include the case where the latency is very high.

Implications of CAP Theorem
Both of these choices have important implications for application design [22]. In
CP systems, the application has to handle errors (since the query to unavailable
data returns an error). While we have given the example of reads, the error could
exist with writes as well, and could result in a transaction or business process
being aborted. In AP systems, the client may get an incorrect result that may not
reflect the most recent update (or stale data). There are two ways of dealing with
this silent error. First, in some cases the inconsistency may not matter. For exam-
ple, if we consider indexes maintained by search engines, it may not matter that a
slightly outdated index is being searched, since only a small amount of data may
have changed from the outdated index to the current index. Alternatively, the
application may need to have logic to detect when it is reading incorrect data. For
example, in Pustak Portal, it may not matter if a customer is querying the status
of an order, and a stale value is displayed. Another example of this is the Internet
Domain Name System (DNS), where networking applications that query DNS are
aware that they may get a stale IP address, and have logic to deal with this error.

An interesting question to consider is whether the CAP theorem holds only in
cloud environments or in conventional (not geographically distributed) enterprise
data centers as well. Theoretically, the CAP theorem holds in both situations.
However, within an enterprise data center, there is generally sufficient redundancy
in the networking that connects mission-critical servers to ensure that network
partitioning does not occur. Failure of mission critical servers can occur, but tech-
niques such as clustering are used to ensure that the failures are brief. Hence,
for mission-critical applications, it can be assumed that the kinds of failures con-
sidered by the CAP theorem do not occur. For non-mission critical servers,
failures can occur, but these failures can be tolerated by suspending the service

274 CHAPTER 6 Addressing the Cloud Challenges

temporarily. Therefore, though the CAP theorem applies within enterprise data
centers as well, in practice its implications can be ignored.

The consequences of the CAP theorem seem to be well accepted, with eBay,
for example, having decided to relax consistency in return for higher availability
and scalability [24]. However, since this is still an area of active research, there
exist views that the significance of the CAP theorem is overrated [25]. The
objections can be summarized in four points:

1. The CAP theorem’s view of the major data-related errors is idealized and
incomplete. There are many other more important causes of database outage,
including human or application error that corrupt the database, and outages for
maintenance. It is necessary to plan for these as well.

2. There are many engineering trade-offs in distributed systems, and the choice of
trade-offs must depend upon the system. For example, a mainframe is much
more stable than Linux or Windows, and the trade-offs for mainframes should
be different.

3. The CAP theorem is generally used to justify relaxing consistency. However,
network partitions are rare compared to the other sources of outage listed earlier.
Making a general decision based upon a rare occurrence is a bad decision.

4. Next-generation databases like VoltDB are orders of magnitude faster than
present-day databases. By reducing the numbers of nodes needed, the CAP
theorem becomes less important.

NOTE
AP (Available, Partition-tolerant) Systems
• Weak Consistency
• Eventual Consistency
• Read-your-writes Consistency
• Session Consistency
• Monotonic-write Consistency
• Variable Consistency

Implementing Weak Consistency
As noted previously, AP systems provide weak consistency. Hence, applications
may need to recover or detect situations where the system returns incorrect data.
The different types of weakly consistent systems are discussed later, together with a
discussion of how these different systems can deal with data inconsistencies [22].

An important subclass of weakly consistent systems is those that provide even-
tual consistency. A system is defined as being eventually consistent if the
system is guaranteed to reach a consistent state in a finite amount of time if there are
no failures (e.g., network partitions) and no updates are made. The inconsistency
window for such systems is the maximum amount of time that can elapse between
the time that the update is made, and the time that the update is guaranteed

Scaling Storage 275

to be visible to all clients. If the inconsistency window is small compared to the
update rate, then one method of dealing with stale data is to wait for a period
greater than the inconsistency window, and then re-try the query. Consider the
case where a customer sends a large email using an email provider such as
Yahoo! Mail. If the receiver is on a different email server, they may not see the
email in their Inbox immediately (i.e., there is an inconsistency between the
sender’s Outbox and the receiver’s Inbox). However, if the recipient waits for
the inconsistency window (in this case, the email propagation time) the mail
should be present in their Inbox.

Read-your-writes consistency is an important subset of eventual consistency,
where the storage system guarantees that if a client updates a data item, it would
never see an older version of the same data item. This kind of guarantee is useful,
for example, for shopping applications such as Pustak Portal. If a customer is buy-
ing books, they would always see the latest version of their shopping cart, since it
is likely that they would be the only person updating their shopping cart. A varia-
tion of this is session consistency where the client is guaranteed to see all made
(by the client) in the same session with the storage system. Monotonic-write-
consistency is a property whereby the system guarantees that writes occur in the
storage system in the same order that they were initiated by the clients (i.e., that
propagation delays do not affect the order of writes). This is an essential property
to ensure simplicity of application programming.

Keeping Pustak Portal Data Consistent
The following subsection examines the consistency issues in more detail by consid-
ering the question of keeping Pustak Portal data consistent. It is assumed that the
Pustak Portal data is as described in Chapter 5. Two scenarios (see Figure 6.7)
are considered. The replication scenario is described in the section called CAP
Theorem. It is assumed that for availability, customer data in servers A,B,C is
replicated in D. The question to be considered is: when a customer completes a
purchase, how can it be ensured that the value of Total_Bought is maintained
consistently across the servers? It is also important to note that the same problem
can arise if multiple values are to be updated, even in the presence of no replication.
Therefore, in the geographically distributed scenario, it is assumed that after
the customer purchase, the transaction data in server C as well as the value of
Total_Bought in server D have to be updated consistently.

In the following sections, a general technique using asynchronous replication
is described first. Subsequently, various cloud storage systems are considered that
have specific mechanisms built in for weak consistency. In each case, the previous
scenarios for keeping Pustak Portal data consistent are considered.

PART 1: PSEUDO-CODE FOR REPLICATION SCENARIO
Begin transaction /* on server C */

result = SELECT * FROM custTable WHERE custID=Customer_Id; /*1*/
New_Total_Bought = result.Total_Bought + Sale_Price;

276 CHAPTER 6 Addressing the Cloud Challenges

result = UPDATE custRecord SET Total_Bought = New_Total_Bought WHERE
custID=Customer_Id;
Queue_message ("D", "Add", "custRecord", "Total_Bought", /*2*/
Sale_Price.ToString());

End transaction

Asynchronous Replication
As stated earlier, in the replicated scenario, it is necessary to keep servers C and
D the same. In the geographically distributed scenario, servers C and D have to
be updated such that the values in both servers are consistent. The basic idea is to
update one of the servers, and create persistent messages to update the other
servers [21]. A separate daemon process on the other servers is responsible for
reading the update messages and performing the updates, ensuring eventual
consistency. This technique is referred to as asynchronous replication or log
shipping, since it essentially consists of replaying the update log for each server
on the other servers. The server update and message creation is done inside a
transaction, so that either both fail or both succeed. This technique is particularly
popular with databases, such as MySQL, since databases always generate a trans-
action log. However, there may be many ways of performing the update, and it is
necessary to carefully consider the sequence of actions that may take place in
order to ensure consistency.

The code segment Part 1: Pseudo-code for Replication Scenario contains
pseudo-code needed on server C for the first part of the process described earlier
in the replication scenario. Statement 1 reads the value of Total_Bought for the

Replication scenario
Total_Bought replicated on C&D

Distributed scenario
transactions: C, Total_Bought: D

Client 2
D

A
B

C

Client 1

Client 2
D

A
B

C

Client 1

FIGURE 6.7

Consistency scenarios.

Scaling Storage 277

customer. The next statement adds the Sale_Price of the book that has been
bought to compute the new value of Total_Bought for the customer. The follow-
ing statement updates the value of Total_Bought in server C. It is now necessary
to update server D as well, to keep the two servers consistent. This is done in
statement 2 by queuing a message to server D to update Total_Bought by adding
the value of Sale_Price to the value of Total_Bought in server D. It is assumed
that the message queuing service is transactional, so that either both the update of
server C and the queuing of the message to server D succeed or both fail. This
can be accomplished by, for example, the message service storing the messages in
a database in the local server (C in this case), before sending it. Examples of
transactional message services include Java Messaging Service (JMS) with the
Java Transaction API (JTA) [26].

PART 2: PSEUDO-CODE FOR REPLICATION SCENARIO
read_without_dequeuing (message); /* 1 */
Begin transaction /* on server D */

SELECT count (*) AS procFlag FROM msgTable WHERE message.msgId =
msgId; /* 2 */
if (procFlag) == 0 { /* 3 */
process_message (message); /* Add Sale_Price to Total_Bought */
INSERT INTO msgTable VALUES (message.msgId);

}
End transaction
if (transaction successful) {dequeue (message)} /* 4 */

For the second part of the process, it is assumed that server D has a database
(called msgTable) that keeps track of all the messages that have been processed. It
is assumed that the message queuing system automatically adds a message id
(called msgId) to each message, and that these message ids are stored in msgTable.
The code segment Part 2: Pseudo-code for Replication Scenario shows the
process, which executes on server D, in pseudo-code. Statement 1 reads the mes-
sage at the head of the queue without removing it from the queue. Statement 2
looks up the message id of the message in the message table to see if it has been
processed. The if statement in statement 3 is executed if the message id is not
found, i.e., the message has not been processed. In that case, the message is
processed, and Total_Bought is updated. Next, the message id is inserted into the
message table. Both operations are performed in the same transaction, so that
either both succeed or both fail. The final step, in statement 4, is to remove the
message from the queue if the transaction completed successfully.

The geographically distributed scenario is similar to the previously mentioned.
Here, it is desired to insert a new purchase into the transaction table on server C,
and simultaneously update Total_Bought on server D. In this case, the three state-
ments following statement 1 in code segment Part 1: Pseudo-code for Replication
Scenario will be replaced by a single statement that inserts a new transaction into
the transaction table on server C. The rest of the pseudo-code to queue a message
to server D, as well as the code in code segment Part 2: Pseudo-code for Replica-
tion Scenario remain the same.

278 CHAPTER 6 Addressing the Cloud Challenges

Complexities of Weak Consistency
From the description of the process mentioned previously, it is clear that servers
C, D offer an eventual consistency model, since any update applied to C will
eventually propagate to D and vice versa. However, it is important to note that to
ensure consistency, it is necessary to study the operations as well as the cloud
system carefully, and design the messages appropriately. The following is an
example of how small changes in the operations performed on the server or the
cloud system can lead to inconsistency [27].

Consider an alternate method for ensuring consistency – queuing a message to
set Total_Bought to the value New_Total_Bought above. In other words, if
Total_Bought is $2,000, and a purchase is made for $10, server C could generate
a message to server D to set Total_Bought to $2,010. This may not work under
the following scenario. Suppose the customer makes two purchases – the first one
we mentioned earlier for $10 and the second one for, say, $15. Server C will then
generate two messages under the alternate method – the first to set Total_Bought
in server D to $2,010, and the second to set Total_Bought to $2,025. Suppose
also that due to network delays or re-transmission errors, the first message to set
Total_Bought to $2,010 is delivered after the second message to set Total_Bought
to $2,025. In that case, Total_Bought in server D would be set to $2,010, and not
$2,025 as desired. Therefore, the alternate method does not work in the case where
message deliveries can be out of order. This example also illustrates that in design-
ing such consistency protocols, it is dangerous to assume that messages will be
delivered in order [27]. However, the error can be handled by discarding older mes-
sages. In the rest of this subsection, the modified algorithm which discards older
messages will be referred to as algorithm II. The method of subsection Persistent
Messaging will be referred to as algorithm I.

While algorithm II works under the previous scenario, there is an important
scenario under which it may not work. Suppose the load-balancing algorithm,
which decides which server to send any request to, randomly picks one of servers
C and D to send a request to each time. Consider the scenario where the first pur-
chase (for $10) is processed by server C, while the second purchase (for $15) is
processed by server D. It can easily be seen that algorithm I would ensure even-
tual consistency, but that algorithm II would generate incorrect results. It is also
to be noted that while algorithm I will lead to correct values for Total_Bought in
C and D, at any given point in time, the value stored in either server may be
incorrect. To ensure correct values for Total_Bought, the load balancing algorithm
could be modified so that for each customer, there is a master server (C in this
case) with the other server (D in the example) being used as a standby for failure
or as a slave server for reads. The correct value of Total_Bought would then
always be available on the master server under both algorithms I and II.

In summary, it can be seen that in order to work with weakly consistent cloud
systems, to ensure consistency, it is necessary to consider the semantics of the
operations being performed, as well as the details of the system, such as the load
balancing algorithm used, and the order of delivery of messages. Maintaining
consistency is simpler in master-slave replication systems. As discussed later,

Scaling Storage 279

many popular databases, such as HBase, offer this kind of consistency for replication
over a WAN, where network-partitioning may be more frequent.

Consistency in NoSQL Systems
The earlier discussion shows that it may not be feasible for highly scalable storage
systems to support strong consistency. However, storage systems must support
some sort of consistency guarantee (e.g., eventual consistency) that applications can
use to detect and recover from inconsistent data. The rest of the section describes
consistency in three well-known NoSQL systems: HBase, MongoDB and Dynamo/
Cassandra. In each case, the architecture of the system is discussed, followed by a
discussion of how to keep data consistent. Keeping data consistent consists of two
steps: first, detecting that an inconsistency exists (conflict detection) and next,
resolving the inconsistency. Both the steps may be done by the application or by
the storage system. If the storage system has to resolve inconsistencies, it would
generally use a simple rule such as the latest write wins.

HBase
HBase is part of the Apache Hadoop cloud project, an overview of which was given
in Chapter 5 from a usage perspective. In this section, the HBase architecture is
presented in such a way to understand the implementation of a cloud system before
designing a method of keeping data consistent [28]. The HBase architecture is similar
to the BigTable architecture developed by Google for its cloud services [29].

HBase Clusters: Figure 6.8 shows the HBase architecture. The left-hand side
of the figure shows an individual HBase cluster. Each HBase cluster is intended
to be in a single data center, so that network partitioning is not a concern within
the cluster. The cluster consists of one or more HMaster servers (of which only
one is active, and the others are on standby), together with multiple HRegion ser-
vers. Each HRegion server is responsible for serving a particular region. Recall
from Chapter 5 that each HBase table consists of a set of key-value pairs. These
are stored in sorted order of key by HBase. A region consists of a contiguous subset
of keys (see Figure 6.8). The HMaster is responsible for dynamically dividing the
table into regions, and allocating regions to HRegion servers so as to keep the load
among HRegion servers balanced. It can be seen that HBase implements sharding,
or horizontal partitioning, for scaling, where the partitioning is automatically
performed by the system, and does not have to be explicitly performed by the user.
For availability, data may be replicated within a cluster, but since network partition-
ing is not likely, these replicas will be consistent.

HBase Replication: HBase replication is also illustrated in Figure 6.8. An
HBase table can be replicated over multiple HBase clusters (this is different from
the within-cluster replication described previously). The clusters may be geogra-
phically distributed or used for different purposes (e.g., one cluster may be used
for receiving real-time data while the other cluster may be used for doing offline
analysis). One of the clusters is the master while the other clusters are slaves.
All updates take place on the master cluster. The updates are batched and

280 CHAPTER 6 Addressing the Cloud Challenges

periodically pushed to the slave. To keep track of the updates that have taken
place, the master uses the HLogs of the HRegion servers in the cluster. Updates
are pushed to randomly selected HRegion servers in the slave cluster that are
responsible for executing the update in the slave cluster. It can be seen that
HBase replication follows the asynchronous replication method described earlier,
and the slaves will be eventually consistent with the master, so HBase offers an
eventual consistency model. However, the architecture of HBase is such that
updates can take place only in the master cluster, so the replication is of the mas-
ter-slave type described in Chapter 5. Thus, even if the clients are geographically
distributed, they have to access the master cluster if they need to perform updates.

HBase operations are as follows. To operate on a particular key-value pair, the
HBase client first contacts the HMaster to find the HRegion server storing that
particular key. This value is cached, so the call is made only once. The client then
transacts directly with the corresponding HRegion server. If the call is a write, a
timestamp is appended to the write (see Chapter 5) and the new value is appended
to the data without overwriting the old value. The update is written to all the
replicas in the cluster, using a log to minimize latency. Actually, the update is
first written to the log (HLog) and then stored in memory. Later, all the replicas
are updated from the HLog. This technique reduces the latency needed to perform

HRegion
server

HRegion
server

HRegion
server

HBase cluster

HMaster
Client

HRegion servers

Slave cluster

Master cluster

HRegion
server

HRegion
server

HRegion
server

HLog

Region 3

Region 2

Region 1

Value

Regions

Key

HBase cluster replication

Store fileHLog

HRegion info

Key value

Mem store

FIGURE 6.8

HBase architecture.

Scaling Storage 281

multiple writes. Reads can be performed from any replica, and by default return
the value with the latest timestamp.

HBase Consistency: HBase has a simple model of consistency. Writes are
directed to all replicas in a cluster, which is in a single data center. Therefore, con-
sistency issues cannot arise within an HBase cluster. Reads will return the value
with the highest timestamp, which implies that the latest write overwrites (by
default) all earlier writes. However, HBase guarantees only eventual consistency
across HBase clusters. Therefore, to be sure of getting the most recent version of
the data, clients have to contact the master cluster, even if they are geographically
distant. One method for getting around this limitation is to split each table into
geographically contiguous tables, and have a separate master cluster for each table.

MongoDB
MongoDB is a document store for JSON objects and was introduced in Chapter 5.
Since the replication architecture of MongoDB is similar to that of HBase, the
MongoDB architecture is described only briefly here. The comments and tech-
niques for keeping data consistent covered under the previous HBase section also
apply to MongoDB.

The replication architecture of MongoDB is illustrated in Figure 6.9 [30, 31].
Multiple MongoDB nodes can be configured as a replica set, in which the data stored
in MongoDB will be replicated. As in HBase, each individual node is actually a col-
lection of MongoDB servers, among which the MongoDB table is sharded. MongoDB
requires that the replica set contain an odd number of members (a null server called
the arbiter can be added if it is desired to use two or some even number of actual
replicas). After the configuration of the replica set, one of the nodes is elected as the
primary (as shown in Figure 6.9) and the other nodes are secondary nodes [32].

Secondary Secondary

Primary
Reads

Reads
writes

Client

MongoDB replica set

FIGURE 6.9

MongoDB architecture.

282 CHAPTER 6 Addressing the Cloud Challenges

The primary receives (by default) all reads and writes. These are propagated to the
secondary nodes using a log file called the oplog (which itself is a MongoDB
document) [33]. To use the secondary nodes for reads (which may not be consistent
with the primary at all times) the flag slaveOkay in the client configuration has to be
set [34]. In case of a network partition, if the majority partition does not contain the
primary, a new primary is elected. The minority partition can continue to service reads
[35]. If there is no majority partition, both partitions continue to serve only reads.

It can be seen from the previous description that like HBase, MongoDB also
offers an eventual consistency model for replication. Furthermore, as in HBase,
replicas can be used only for reads, so the replication is again the master-slave
type described in Chapter 5.

Dynamo/Cassandra
Dynamo is another highly available key-value store created as part of an experimental
project at Amazon. Cassandra is a NoSQL system introduced in Chapter 5, which
uses much of the Dynamo technology. These are described here because Dynamo
has explicit support for detecting inconsistencies via an interesting technology called
vector clocks, and they both have support for the innovative concept of variable
consistency [36]. Additionally, Riak, another NoSQL storage system which is an
open source re-implementation of Dynamo, has both these features as well.

Vector clocks: The principles behind Dynamo’s vector clocks can be illustrated
by a simple example. Assume that there are four processes A, B, C, D, which are
updating a common variable x. If A sets x to 10, this is stored as (x=10; A:1) by the
system. A:1 is the vector clock, which consists of the id of the process that did the
write, together with the time (assumed to be 1). Suppose that B and C now read x
simultaneously and both set it to 15. This is now stored as (x=15; A:1, B:2) and
(x=15; A:1, C:3). The order of storage depends upon which of B and C completed
first; recall that as in HBase, old values are not overwritten. The vector clock essen-
tially maintains the history of all updates. The vector clock for B includes the id of
A since B read the value updated by A, and similarly for C. If D now tries to read
x, the system will detect an inconsistency from the two vector clocks for x. Examin-
ing the vector clocks A:1, B:2 and A:1, C:3, it is clear that x has been updated by B
and C in parallel after the initial update from A (because C has seen only the A:1
update, and not the B:2 update). In general, if there are two vector clocks V and W,
W is consistent with and later than V if every vector clock element in V is also
found in W. D is now given both values and is expected to create a new consistent
value for x. Note that the inconsistency could also have been detected at the time
that C tried to write x. However, Dynamo emphasizes letting writes complete, so it
chooses to detect inconsistencies during reads.

Variable consistency: It was seen that some NoSQL systems like HBase are
AP systems, which are highly available, but offer eventual consistency. Relational
databases, on the other hand, generally offer strict consistency. Dynamo had the
explicit objective of allowing the degree of consistency to be chosen by the user.
This method, which is also implemented in both Cassandra and Riak is as follows.

Scaling Storage 283

Suppose there are N replicas of a table. Dynamo allows specification of W, the
number of replicas that must be written for any write operation to be considered a
success. It also allows specification of R, the number of replicas that must be read
for a read operation to be considered a success. Note that no matter what the
value of R and N, Dynamo eventually writes to all replicas (including replicas
that are presently down). The values of R and W only govern when the storage
system notifies the application that a read or write is complete. Given an N, by proper
choice of R and W, it is possible to have either strict consistency, like relational
databases, or eventual consistency, like many NoSQL systems. If R + W > N, then
the system enforces strict consistency. This can be seen from a simple example.
Assume N = 5, R = 3, and W = 3. For any write, at least three replicas are written.
Suppose replicas 1, 2, 4 are the replicas that are written by the latest write. The only
way a read can return stale data is if it reads only replicas 3 and 5. However, since
any read will read at least three replicas, any read will read at least one of replicas 1,
2, or 4, and return the latest value.

Conversely, if eventual consistency is sufficient, the user can set R, W such that
R+W < = N. In this case, different reads may return different values; but eventually,
the system will be consistent. In the previous example, if R = 1, W = 1, some reads
may return the latest value, and some reads may not, depending upon which repli-
cas are read and written. All replicas will eventually take the correct value, since
Dynamo eventually will write to all replicas. The motivation for using R = 1, W = 1
is that the latency is lower than using a higher value. By default, Cassandra recom-
mends using R =W = Ceiling ((N+1)/2) where Ceiling rounds up (N+1)/2 to the
next highest integer if it is a fraction. This value is called QUORUM, and it can be
seen that it enforces strict consistency. The discussion on consistency in this section
parallels the discussion in [27, 37, 38, 39, 40] which also discusses other issues,
such as backup and restore.

MULTI-TENANCY
Earlier chapters have described relatively coarse-grained sharing of resources via vir-
tualization. This chapter describes more fine-grained resource sharing, called multi-
tenancy. In order to make the concept clear, consider an experiment conducted by
Jacob et al. in the context of database. The experiment compares three methods of
creating a database shared among multiple customers [41]. In the shared machine
method, each customer was given their own database process and tables on a shared
machine. In the shared process method, each customer had their own database
tables, but there was only one database process which executed instructions on behalf
of all customers. In the shared table method, in addition to the customers sharing the
database process, the data was stored in shared tables (each row being prefixed with
the customer id to indicate the customer to which the row belonged). Measurements
showed that under the shared machine approach, PostGresQL used 55MB of main
memory and 4 MB of disk memory for storing data for one customer. However,

284 CHAPTER 6 Addressing the Cloud Challenges

under the shared process approach, for 10,000 customers, PostGresQL used only 80
MB of main memory and 4,488 MB of disk memory. Clearly, the scalability of the
system would be much better under the shared process method. Measurements were
not presented for the shared table approach, but the scalability is expected to be even
greater. In summary, the measurements show that the finer the granularity of sharing,
the greater the scalability of the system.

However, the increased efficiency in scaling brings with it additional security
requirements. For example, in the shared table approach, which is the most effi-
cient from the resource sharing point of view, it is necessary to be able to specify
access control for each row of the table [41]. Additionally, customization becomes
difficult; in the shared table approach, how would it be possible for customers to
add their own custom fields in the table? In the rest of the chapter, methods of
implementing multi-tenancy with fine grained resource sharing while ensuring
security and isolation between customers, and also allowing customers to custo-
mize the database, are described. First, security support for multi-tenancy is dis-
cussed. Next, techniques for resource sharing with security are described. Finally,
support for customization is discussed.

NOTE
Multi-Tenancy Requirements
• Fine grain resource sharing
• Security and isolation between customers
• Customization of tables

Multi-Tenancy Levels
Implementing the highest degree of resource sharing for all resources may be
prohibitively expensive in development effort and complexity of the system. A
balanced approach, where there is fine grained sharing of resources only for
important resources, may be the optimum approach. The four levels of multi-
tenancy are described in the following list [42]; for any given resource in a cloud
system, the appropriate level could be selected.

1. Ad Hoc/Custom instances: In this lowest level, each customer has their own
custom version of the software. This represents the situation currently in most
enterprise data centers where there are multiple instances and versions of the
software. It was also typical of the earlier ASP model, which, as stated in
Chapter 4, represented the first attempt to offer software for rent over the
Internet. The ASP model was similar to the SaaS model in that ASP
customers (normally businesses), upon logging in to the ASP portal, would be
able to rent use of a software application like CRM. However each customer
would typically have their own instance of the software being supported. This
would imply that each customer would have their own binaries, as well as

Multi-Tenancy 285

their own dedicated processes for implementation of the application. This
makes management extremely difficult, since each customer would need their
own management support.

2. Configurable Instances: In this level, all customers share the same version of
the program. However, customization is possible through configuration and
other options. Customization could include the ability to put the customer’s
logo on the screen, tailoring of workflows to the customer’s processes, and so
on. In this level, there are significant manageability savings over the previous
level, since there is only one copy of the software that needs to be maintained.
Additionally, upgrades are seamless and simple.

3. Configurable, multi-tenant efficient instances: Cloud systems at this level in
addition to sharing the same version of the program, also have only one
instance of the program running which is shared among all the customers.
This leads to additional efficiency since there is only one running instance of
the program.

4. Scalable, configurable, multi-tenant efficient instances: In addition to the
attributes of the previous level, the software is also hosted on a cluster of
computers, allowing the capacity of the system to scale almost limitlessly.
Thus the number of customers can scale from a small number to a very large
number, and the capacity used by each customer can range from being small
to very large. Performance bottlenecks and capacity limitations that may have
been present in the earlier level are eliminated. For example, in a cloud email
service like Gmail or Yahoo Mail, multiple users share the same physical
email server as well as the same email server processes. Additionally, the
emails from different users are stored in the same set of storage devices, and
perhaps the same set of files. This results in management efficiencies; for
example, if each user had to have a dedicated set of disks for storing email,
the space allocation for each user would have to be managed separately.
However, the drawback of shared storage devices is that security requirements
are greater; if the email server has vulnerabilities and can be hacked, it is
possible for one user to access the emails of another.

Tenants and Users
Before proceeding to discuss methods for implementing multi-tenancy, the reason
behind the term multi-tenancy is described. In the case of a service like Sales-
force.com, it is necessary to distinguish between the customers of a service (who
are businesses) and the users of the services, who will be employees of the busi-
ness. To avoid confusion, the customers of a SaaS or PaaS service are referred to
as tenants, regardless of whether they are businesses or users (in the case of a
service like Gmail). It is necessary for a cloud service to enforce strict isolation
between tenants of the service. The term user continues to be used for the actual
users of the service. Generally, the tenants of a service will specify the degree of
isolation to be enforced between users.

286 CHAPTER 6 Addressing the Cloud Challenges

http://www.Salesforce.com
http://www.Salesforce.com

Authentication
The key challenge in multi-tenancy is the secure sharing of resources. A very impor-
tant technology to ensure this is authentication, which is the process by which a user
signs on to the cloud system and accesses its resources. Clearly each business tenant
would like to specify the users who can log in to the cloud system. Unlike traditional
computer systems, the tenant would specify the valid users, but authentication still
has to be done by the cloud service provider. Two basic approaches can be used: a
centralized authentication system or a decentralized authentication system [42].
Either approach would allow incorporation of different authentication methods; e.g.,
2 factor authentication or biometric authentication. In the centralized system, all
authentication is performed using a centralized user data base. The cloud administra-
tor gives the tenant’s administrator rights to manage user accounts for that tenant.
When the user signs in, they are authenticated against the centralized database. In the
decentralized system, each tenant maintains their own user data base, and the tenant
needs to deploy a federation service that interfaces between the tenant’s authentica-
tion framework and the cloud system’s authentication service.

Decentralized authentication is useful if single sign-on is important, since cen-
tralized authentication systems will require the user to sign on to the central
authentication system in addition to signing on to the tenant’s authentication sys-
tem. However, decentralized authentication systems have the disadvantage that
they need a trust relationship between the tenant’s authentication system and the
cloud provider’s authentication system. Given the self-service nature of the cloud
(i.e., it is unlikely that the cloud provider would have the resources to investigate
each tenant, and ensure that their authentication infrastructure is secure), centra-
lized authentication seems to be more generally applicable.

Implementing Multi-Tenancy: Resource Sharing
Another key technology to ensure secure resource sharing in a multi-tenant service is
access control. Two forms of access control can be provided in a cloud service provi-
der – roles, and business rules [42]. Roles consist of a set of permissions included in
the role; for example, a storage administrator role may include the permissions to
define storage devices. These permissions may not be included in a server administra-
tor role. Generally, the cloud system should contain a set of default roles that are
appropriate for the cloud system; e.g., a database administrator role for a PaaS system
that includes a database. It should be possible for the tenant to use the default roles as
templates, customize them for their usage, and assign them to users. The ability to spe-
cify roles for users, of course, is itself a permission that only certain roles can possess.

Business rules are policies that provide more fine-grained access control than
roles provide, since they may depend upon the parameters of the operation. For
example, in a banking application, it may be possible to specify a limit on the
amount of money a particular role can transfer, or specify that transfers can occur
only during business hours. Business rules are distinguished from roles in that
whether an operation is permitted, or not, depends not just on the operation, but

Multi-Tenancy 287

also upon the parameters (e.g., the amount of money to be transferred by the
operation). Enforcement of business rules depends upon the application. These can
be implemented using policy engines such as Drools Expert and Drools Guvnor [43].

There are broadly two types of access control models. One is based on access
control lists (ACL) where each object is attached with a list of permissions for
each role. The second approach is that of capability-based access control, which
works just like a house-key. If a user holds a reference or capability to an object,
he has access to the object. The key is like an unforgettable link to the object;
just by virtue of the user having this key grants him access to the object [44].

Next, different methods of sharing resources for cloud applications using this
access control are discussed. A case study of multi-tenancy in Salesforce.com and
security aspects of Hadoop (MapReduce and HDFS) are also presented to illus-
trate these principles.

Resource Sharing
Two major resources that need to be shared are storage and servers. The basic
principles for sharing of these resources are described first. This is followed by a
deeper discussion that focuses on the question of how these resources can be
shared at a fine granularity, while allowing the tenants to customize the data to
their requirements [42, 45, 46, 47].

Sharing storage resources: In a multi-tenant system, many tenants share the
same storage system. Cloud applications may use two kinds of storage systems:
file systems and databases, where the term database is used to mean not only rela-
tional databases, but NoSQL databases as well. Since file systems already have
well-known mechanisms for allocating files on shared storage, and restricting
access to those files to specified users via ACLs and other mechanisms, they are
not discussed further here. The discussion is focused on sharing data for different
users in a database. The focus is also on multi-tenant efficient approaches where
there is only one instance of the database which is shared among all the tenants.

There are two methods of sharing data in a single database – table sharing and
dedicated tables per tenant [47]. In the dedicated table method, each tenant stores
their data in a separate set of tables different from other tenants. This is illustrated in
Figure 6.10, which shows the way auto repair stores may store data about their custo-
mers in a hypothetical portal called MyGarage.com. The figure shows three garages
(Best Garage, Friendly Garage, and Honest Garage), each of which stores their cus-
tomer data in their own table. Since most databases store each table in a separate set
of files, access to these files can be restricted to the auto repair shop that owns the
tables. This provides an additional layer of security. If the database is a relational data-
base, the three garages can be registered as database users, and access rights can be set
by the SQL statement SQL GRANT SELECT, ..., ON FriendlyTable TO FriendlyGarage
WITH GRANT OPTION. This statement gives access rights to the table FriendlyTable to
the database user FriendlyGarage. The WITH GRANT OPTION clause allows the tenant to
further give access rights to other database users.

The other alternative, the shared table approach, is illustrated in Figure 6.11
for the same set of data. In this case, the data for all tenants is stored in the same

288 CHAPTER 6 Addressing the Cloud Challenges

http://www.Salesforce.com

Best garage

Friendly garage

Honest garage

Car license

Car license

Service

Service

Cost

Cost

Car license Service Cost

FIGURE 6.10

Dedicated tables.

Data table 1

Car license Repair CostTenant Id

1

2

2

1

3

2

Metadata table 1

Data

Best garage

Friendly garage

Honest garage

Tenant Id

1

2

3

FIGURE 6.11

Shared tables.

Multi-Tenancy 289

table in different rows. One of the columns, Tenant Id, identifies the tenant to
which this row belongs. The shared table method is clearly more space-efficient
than the dedicated table method. When the application performs an operation on
behalf of a tenant, it can use a view to select only those rows that belong to the
tenant. Hence, the shared table method may use more computing resources than
the dedicated table method. For additional security, the data for each tenant can
be encrypted using a key for the tenant. An auxiliary table, called a metadata
table, stores information about the tenants.

Sharing compute resources: Different approaches to sharing compute
resources are possible for the previous two storage sharing approaches [47]. In the
dedicated table method, each tenant has their own set of files. Therefore, operating
system features for security can be used to ensure that one tenant cannot read the
tables of another tenant. Consider the case in Linux where the application is a
multi-threaded application, with each thread serving a request for some tenant. In
this case, a thread can set its FSUID to the userid of the tenant that it is executing
requests for. The thread would then be allowed to access only the files for which
the tenant has access rights. However, in the shared table case, the cloud system
clearly relies upon the application to ensure security of the data.

Customization: It is important for the cloud infrastructure to support customi-
zation of the stored data, since it is likely that different tenants may want to store
different data in their tables. For example, in the automobile repair shop examples
given earlier, different shops may want to store different details about the repairs
carried out. Three methods for doing this are described in the following para-
graphs. It is to be noted that difficulties for customization occur only in the shared
table method. In the dedicated table method, each tenant has their own table, and
therefore can have different schema.

Figure 6.12 illustrates the pre-allocated columns method [45, 46, 47]. In this
method, space is reserved in the tables for custom columns, which can be used by
tenants for defining new columns. In the figure, two custom columns, called Custom1
and Custom2, are shown. A real implementation would have more (e.g., Salesforce.
com, described later, has 500). In the data table, the type of the custom columns is
defined as string. The actual type is stored in the metadata table. As can be seen
from the metadata table in the figure, Best Garage, which focuses on excellence in
service, has stored the Service Rating, which is an integer, in Custom1, whereas
Friendly Garage stores the name of the Service Manager for each service call, which
is a string, in the same field. The tenant Honest Garage is not using this column. To
actually use the field, it has to be cast to the type shown in the metadata table.

The major problem with the pre-allocated columns technique is that there
could be a lot of wasted space. If the number of columns is too low, then users
will feel constrained in their customizations. However, if the number is too big,
there will be a lot of space wastage. The name-value pair method does not suffer
from these deficiencies and is shown in Figure 6.13. In this method, Data Table 1
(which has the standard pre-defined columns provided by the application) has an
extra column which is a pointer to a table of name-value pairs (Data Table 2 in

290 CHAPTER 6 Addressing the Cloud Challenges

http://www.Salesforce.com
http://www.Salesforce.com

the figure) which indicates additional custom fields for this record. In the example
shown, the first data record (which belongs to tenant 1 – Best Garage) has a cus-
tom field, which is indicated by a pointer into Data Table 2, which is called a
pivot table [48]. The pivot table record shows that this custom field contains the
Service Rating which is of type int (name with NameID 15 in metadata table 1).
In case there are additional custom fields associated with this record, there can be
additional records in Data Table 2 with the same id of 275.

While the name-value pair method is space efficient, unlike the custom column
method, it is necessary to re-construct the data before it is used by joins. In the
XML method, the final column of the standard database is an XML document,
where records of any arbitrary structure can be stored. This is somewhat similar to
the pureXML storage system described in Chapter 2. This method is therefore not
discussed further.

Case Study: Multi-Tenancy in Salesforce.com
Since Force.com and Salesforce.com are major platforms that implement multi-
tenancy, the principles are illustrated by describing resource sharing and access
control in the Force.com platform, which is the PaaS platform on which the
Salesforce.com service is built. The tables used by Force.com are described first,
followed by an example.

For achieving multi-tenancy in Force.com, two metadata tables are important
[49, 50]. The first table, called the Objects table, describes the objects in the

Data table 1

Car license Service CostTenant Id

1

2

2

1

3

2

Custom1 Custom2

Metadata table 1

Tenant name

Best garage

Friendly garage

Honest garage

Tenant Id

1

2

3

Custom1 name

Service rating

Service manager

Custom1 type

int

string

FIGURE 6.12

Pre-allocated columns.

Multi-Tenancy 291

http://www.Salesforce.com
http://www.Force.com
http://www.Salesforce.com
http://www.Force.com
http://www.Salesforce.com
http://www.Force.com
http://www.Force.com

system. Objects are similar to tables in database terminology, and the Objects table
contains a GUID (globally unique id), the ObjID (object id), OrgID (the tenant who
owns the object), and the object name ObjName. The second table is the Fields
metadata table, which contains a description of the fields (similar to columns). The
Fields metadata table contains the FieldID, owning OrgID, ObjID to which this
field belongs, the FieldName, and type of the field, together with a Boolean value
IsIndexed, which indicates whether it is necessary to index this field, and the
FieldNum which indicates the field number of the field in the record, which will be
described later. The Data table uses the pre-allocated table method to share a table
among the various tenants. The data table contains a GUID, OrgID, and ObjName as
the first three fields. This is followed by fields Value0, Value1, …, Value500 which

Data table 1

Car license Service CostTenant Id

1

2

2

1

3

2

Name-value pair rec

275

Data table 2 (name-value pairs)

NameID ValueName-value pair rec

275 15 5.5

Metadata table 1

Name TypeName Id

15 Service rating

Service manager

int

string

Metadata table 2

DataTenant Id

1

2

3

Best garage

Friendly garage

Honest garage

FIGURE 6.13

Name-value pairs.

292 CHAPTER 6 Addressing the Cloud Challenges

store the actual data values (as described earlier for pre-allocated tables). Value0
corresponds to FieldNum 0, Value1 to FieldNum 1, and so on. The names of the
fields and type of values can be found in the Fields table.

Figure 6.14 illustrates this design with an example. It is assumed that a tenant
with OrgID 77 owns a table called SalesTab. The Objects table contains an entry
for this table, which has an ObjID of 134. From the Fields table, it can be seen
that this object has three fields – CustomerID, which is an integer, CustAddr,
which is a string, and LastSaleDt, which is a date. CustomerID and LastSaleDt
have associated indexes (which is described next). The Data table contains an
entry (row) for this object in which the CustomerID is 93, the CustAddr is New
Delhi, and the LastSaleDt is 06-Aug-2010. The ObjID for this row is 134 (indi-
cating that it belongs to the SalesTab) and the OrgID is 77.

Indexes are maintained in Salesforce.com using a variant of the pivot table
method described earlier in this section. It is not possible to index the Data table
directly, since different rows in the same column may have different fields. For
example, while Value0 contains CustomerID if the row belongs to SalesTab, it
may contain some other field with a different datatype if the row belongs to a dif-
ferent object. Force.com therefore uses an auxiliary table called Indexes for the
purpose of indexing. The Indexes table contains a column for each datatype sup-
ported in Force.com; Figure 6.14 shows three of these columns – one each for
strings, numerical values, and dates. Force.com creates one row for each indexed
field in an object. In the example, there are two indexed fields – CustomerID and
LastSaleDt. As can be seen, the Indexes table has one entry for each field; the
entry for CustomerID is in the NumValue column (since CustomerID is an integer),
and the entry for LastSaleDt is in the DateValue column. The GUID and FieldNum
fields identify the record and field number, respectively. A query to find all transac-
tions for the customer with CustomerID equal to 93 will translate into a query to the
Indexes table to find all the rows where ObjID=134 (indicating that the row belongs to

Data table

Objects table Fields table

Indexes

77 134 0 5757 93

06-Aug-20105757213477

ObjID FieldNum GUID StringValue NumValue DateValue

GUID

GUID FieldID OrgID ObjID FileName Datatype IsIndexed FieldNum

5757 77 134 93 New Delhi 06-Aug-2010

OrgID

ObjID

OrgID

ObjID

OrgID

77 56

62

83 77

77

77

134

134

134 CustomerID Integer 1

1

1

2

0

0

String

Date

CustAddr

LastSaleDt

1341445 SalesTab

ObjName

Value0 Value1 Value2 Value3

FIGURE 6.14

Force.com multi-tenancy.

Multi-Tenancy 293

http://www.Salesforce.com
http://www.Force.com
http://www.Force.com
http://www.Force.com
http://www.Force.com

SalesTab) and FieldNum=0 (indicating the row is for CustomerID) and NumValue=93.
Subsequently, the GUIDs can be used to find other fields in the same rows.

Multi-Tenancy and Security in Hadoop2

Hadoop is used by many enterprises and some of the installations store sensitive,
business critical data in HDFS. Many of these installations are set up in a way that
multiple users, possibly from different groups, share them. Authenticated access to
the business critical data is therefore important in such a multi-tenant setup. Strong
authentication based on Kerberos protocol was introduced in Hadoop-0.21 [51].
Kerberos [52] based authentication was chosen over public key operations (SSL) as it
is faster and provides better user management. For example, to revoke access
permission to a user, just deleting the user from the centrally managed Kerberos dis-
tribution center (KDC) is sufficient, unlike in SSL where a new certificate revocation
certificate has to be generated and propagated to all the servers. Before getting into
the security aspects of HDFS, a brief description of HDFS architecture is given.

HDFS Architecture
The Hadoop Distributed File System (HDFS) is a distributed file system optimized to
store large files and provides high throughput access to data. HDFS was introduced
from a usage and programming perspective in Chapter 3 and its architectural details
are covered here. In HDFS, files are divided into blocks and distributed across
the cluster. The blocks are replicated to handle hardware failure, and checksums are
added for each block for corruption detection and recovery. Figure 6.15 gives
the high-level architecture of HDFS and a brief description of the architectural
components follows. From the architectural description, it can be seen that HDFS is a
centralized metadata distributed file system.

NameNode: The NameNode is the central point of contact for the HDFS. It
manages the file system’s metadata. The metadata, at a high level, is a list of all
the files in the file system, the mapping from each file to the list of blocks the file
has. This metadata is persisted on disk. As in other file systems, one of the signif-
icant attributes of the metadata that is built at runtime is the mapping from the
file blocks to the physical locations of the blocks. The NameNode also controls
the read/write accesses to the files from clients. The NameNode keeps track of the
nodes in the cluster, the disk space the nodes have, and whether any node is
dead. This information is used to schedule block replications for newly created
files, and also to maintain a sufficient number of replicas of existing files.

DataNodes : The DataNodes are the slaves in the HDFS cluster. When a cli-
ent makes a request to create a file and write data to it, the NameNode assigns
certain DataNodes to write the data to. If the replica of the file under construction
is, for example, 3, a write pipeline would be set up between the three DataNodes.
The blocks would be written to the first DataNode in the pipeline, and that

2Content contributed by Mr. Devaraj Das, Yahoo! Inc., United States.

294 CHAPTER 6 Addressing the Cloud Challenges

DataNode would write the blocks to the next DataNode in the pipeline, and so on
until the last DataNode. A write is considered successful when all the replicas
have been successfully written. This guarantees data consistency. The DataNodes
also serve up blocks when clients request them to do so. They remain in touch
with the NameNode, periodically send disk utilization reports, and periodically
send block reports. The block reports are used by the NameNode to map the
blocks of a file to its locations.

The Secondary NameNode: The edits in the file system’s namespace are
stored in an edits log file akin to the transaction log file traditionally seen in the
database world. The secondary NameNode periodically polls the NameNode and
downloads the file system image file. It also gets the edits log file, and merges
the two. The new file system image file is then uploaded to the NameNode. This
is done so that the file system image stays close to the in-memory representation
of the filesystem in the NameNode. If the NameNode ever crashes, a new Name-
Node can be brought up quickly with the image that was last successfully merged.

The HDFS Client: The client talks to the NameNode first for any file access.
For file creations, the NameNode updates its metadata for the newly created file.
It also chooses DataNodes that the client should write the file blocks to. For file
open requests, the NameNode responds back with the set of locations that the cli-
ent could read the data blocks from. If there are multiple DataNodes from where
a given block could be read, the client chooses the one that is closest to it. This
reduces the amount of data sent over the network.

HDFS utilizes rack-awareness and replication for high availability. In a real-
world deployment, a cluster is composed of many racks. The machines within a
rack are connected together on a high bandwidth network. A switch interconnects

Metadata ops

DataNodes

I/O

Rack 1 Rack 2

NameNode

Metadata (Name, replicas, ...):
/home/dd/foo, 3, ...

/home/dd/docs, 4, ...

Client

Client

FIGURE 6.15

High-level architecture of the HDFS.

Multi-Tenancy 295

the racks. Typically, the inter-rack bandwidth is much lower, and that bandwidth
is shared between many hosts, ultimately. In order to minimize the chances of
data loss, the blocks are replicated on at least one off-rack machine (assuming the
file has a replica count greater than one).

HDFS Security
Figure 6.16 shows the interactions for a user trying to access some file from the
HDFS [53, 54]. It is standard Kerberos authentication [52] between the User and
the NameNode. Briefly, the User, NameNode and DataNode are known to the
KDC. First, the user requests the KDC for a ticket and the Kerberos server returns
an encrypted ticket (TGT). The TGT is decrypted and presented again to the
authentication service of the Kerberos server requesting for a service ticket. The
returned service ticket is used to access the NameNode service. Similar interaction
happens between the DataNode and the NameNode.

The DataNode typically stores lots of data blocks, and they could belong to
different files owned by different users. When a request for reading a data block
comes from a user, the DataNode needs to ensure that the user is authorized to
read the block in question. Hadoop defines tokens for authorizing such accesses.
That token is called Block Access Token. NameNode generates the Block Access
Tokens when a client makes a request for accessing a file’s blocks for reading or
for writing.

Data accesses can be made from MapReduce tasks as well and those accesses
need to be authenticated too. In other words, tasks need to talk to the NameNode
and DataNodes. This is where there is a shift from the regular Kerberos
authentication.

Delegation tokens: In a large cluster comprised of thousands of machines, at
any point in time there could be tens of thousands of tasks, all trying to access
the NameNode for file accesses. Multiple waves of thousands of these tasks may
be trying to authenticate themselves at around the same time. The KDC could end
up becoming a bottleneck in a large secure Hadoop cluster.

To avoid this problem, Hadoop defines a token for the authentication between
the tasks and the NameNode. That token is called the Delegation Token.

Kerberos KDC NameNode

DataNode

User

FIGURE 6.16

Secure interactions to access a file in HDFS.

296 CHAPTER 6 Addressing the Cloud Challenges

The delegation token is issued by the NameNode upon a client request and has
the same semantics for expiration and renewal as a TGT granted by a Kerberos
KDC. Needless to say, the client authenticates itself using Kerberos to make that
request.

The Delegation Token consists of a TokenIdentifier and a Password. Clients
get these tokens from the NameNode, and use them to establish a secure commu-
nication channel via the SASL-Digest protocol.

MapReduce security
A high-level overview of the architectural components of MapReduce was

explained in Chapter 3 and Figure 3.31. Now, the security issues in MapReduce
are to do with authentication of users trying to talk to the JobTracker for submis-
sion of jobs, getting jobs’ statuses, etc., and authentication of tasks that run
as part of jobs. The other issue is about authorizing users for actions such as “kill-
job”, “kill-task”, etc. Standard Kerberos authentication is used for the communica-
tion between the user and the JobTracker. Authorization of users for performing
actions on jobs is based on Access Control Lists that the job submitter provides
during job submissions.

During job submission, the client part of the Hadoop framework implementa-
tion makes a request for a Delegation Token (as outlined in the previous section,
tasks require a Delegation Token to talk to the HDFS). The other token is the Job
Token, and the client generates this. These tokens are sent to the JobTracker as
part of the job submission request (Figure 6.17).

The TaskTrackers that run the tasks of a job make a copy of the tokens on the
disk in a private location visible to only the TaskTracker user and the job owner
user. The tasks read that file upon startup and load the tokens in memory. The
tasks do mutual authentication with the TaskTracker using the Job Token. This is
true for both the RPC and the shuffle communication paths.

Tasks run as the job owner user on the compute nodes. The TaskTracker
creates a sandboxed environment for the tasks. Tasks outputs on the local disk
(Map outputs, for example) are not accessible by other users.

Kerberos KDC JobTracker

Task

Task

TaskTracker

User

FIGURE 6.17

MapReduce security.

Multi-Tenancy 297

AVAILABILITY
Cloud services also need special techniques to reach high levels of availability.
Mission-critical enterprise services generally have availability in the 99.999%
range. This corresponds to a downtime of 5 minutes in an entire year! Clearly,
sophisticated techniques are needed to reach such high levels of reliability. Even
for non-mission critical applications, downtime implies loss of revenue. It is there-
fore extremely important to ensure high availability for both mission-critical as
well as non-mission-critical cloud services.

There are basically two approaches to ensuring availability [55]. The first
approach is to ensure high availability for the underlying application upon
which the cloud service is built. This generally involves one of three techniques.
Infrastructure availability is ensuring redundancy in infrastructure, such as
servers, so that new servers are always ready to replace failed servers. Similarly,
middleware availability deals with middleware redundancy, and application
availability is achieved via application redundancy. The other approach, which
is the focus of this section, is to build support for high availability into the
cloud infrastructure.

Two types of support can be built into the cloud infrastructure for high avail-
ability. Recall that in a cloud service, for scalability, generally multiple instances
of an application will be running. The first technique is failure detection, where
the cloud infrastructure detects failed application instances, and avoids routing
requests to such instances. The second technique is application recovery, where
failed instances of application are restarted.

Failure Detection
Many cloud providers, such as Amazon Web Services’ Elastic Beanstalk, detect
when an application instance fails, and avoid sending new requests to the failed
instance. In order to detect failures, one needs to monitor for failures.

Failure Monitoring: There are two techniques of failure monitoring [55]. The
first method is heartbeats, where each application instance periodically sends a
signal (called a heartbeat) to a monitoring service in the cloud. If the monitoring
service does not receive a specified number of consecutive heartbeats, it may
declare the application instance as failed. The second is the method of probes.
Here, the monitoring service periodically sends a probe, which is a lightweight
service request, to the application instance. If the instance does not respond to a
specified number of probes, it may be considered failed.

There is a trade-off between speed and accuracy of detecting failures. To
detect failures rapidly, it may be desirable to set a low value for the number of
missed heartbeats or probes. However, this could lead to an increase in the num-
ber of false failures. An application instance may not respond due to a momentary
overload or some other transient condition. Since the consequences of falsely
declaring an application instance failed are severe, generally a high threshold is

298 CHAPTER 6 Addressing the Cloud Challenges

set for the number of missed heartbeats or probes to virtually eliminate the
likelihood of falsely declaring an instance failed.

Redirection: After identifying failed instances, it is necessary to avoid routing
new requests to these instances. A common mechanism used for this in HTTP-
based protocols is HTTP-redirection. Here, the Web server may return a 3xx
return together with a new URL to be visited. For example, if a user types “http://
www.pustakportal.com/” into their browser, the request may first be sent to a
load-balancing service at Pustak Portal, which may return a return code of 302
with a URL “http://pps5.pustakportal.com”. Here, pp5.pustakportal.com is the
address of a server that is currently known to be up, so that the user is always
directed to a server that is up.

Application Recovery
In addition to directing new requests to a server that is up, it is necessary to
recover old requests. An application independent method of doing this is check-
point/restart. Here, the cloud infrastructure periodically saves the state of the
application. If the application is determined to have failed, the most recent check-
point can be activated, and the application can resume from that state.

Checkpoint/Restart: Checkpoint/restart can give rise to a number of complex-
ities. First, the infrastructure should checkpoint all resources, such as system memory,
otherwise the memory of the restarted application may not be consistent with the rest
of the restarted application. Checkpointing storage will normally require support from
the storage or file system, since any updates that were performed have to be rolled
back. This could be complex in a distributed application, since updates by a failed
instance could be intermingled with updates from running instances. Also, it is diffi-
cult to capture and reproduce activity on the network between distributed processes.

In a distributed checkpoint/restart, all processes of distributed application
instances are checkpointed, and all instances are restarted from a common check-
point if any instance fails. This has obvious scalability limitations and also suffers
from correctness issues if any interprocess communication data is in-transit at the
time of failure.

Ubuntu Linux, for example, has support for checkpoint /restart of distributed
programs [56]. Even sequential applications can be transparently checkpointed if
linked with the right libraries, using the Berkeley Lab Checkpoint/Restart Library
[57]. It can also invoke application-specific code (that may send out a message to
the users, or write something in a log file, etc.) during check pointing and restart.
A commercial offering that uses a different approach is described next.

Librato Availability Services
Librato Availability Services is an application-independent restart mechanism [58].
Librato runs applications over an OS Abstraction Layer, which is interposed
between the applications and the OS. This user space layer keeps track of the

Availability 299

http://www.pustakportal.com/
http://www.pustakportal.com/
http://pps5.pustakportal.com
http://www.pp5.pustakportal.com

application state, and is responsible for periodically checkpointing the application.
There is no recompilation or relinking of the application needed.

Figure 6.18 shows an abstract view of Librato services. It sits in between the
application libraries and OS to virtualize OS API calls that carry state.
These availability services capture periodic checkpoints for the application’s state –
including terminal I/O, network sockets, process state, IPC state as well as time
functions. It does only an incremental checkpointing, saving time and space for
checkpoint images. Upon a failure, Librato Availability Services restore the applica-
tion from its last checkpoint, either on the same node or a different node. Librato
checkpoints even parallel programs that use message passing interface.

Use of Web Services Model
Hadoop MapReduce framework uses a special case of checkpoint/restart where
failed jobs are restarted from the beginning on some other node (the number of
retries are configurable). TaskTrackers are blacklisted, and they are not given new
tasks (unless the cluster has too few healthy TaskTrackers). If TaskTrackers fail
too often to run tasks, they are deemed unhealthy by the monitoring framework.

In general, if the application is completely based on service-oriented architec-
ture, just restarting the individual services may be sufficient to recover from the
error. This method will lose any service requests that were in the process of being
served. However, the service user would have got an error and hence will retry to
get the service response. If the application is not built in a pure-service model,
additional effort to ensure that the application state is consistent and that the ser-
vice is ready to start serving the next batch of user requests is needed. Here,
checkpoint/restart techniques become very necessary.

Application

Application
libraries

Librato OS
abstraction

OS

Application

Job
scheduler

...

WAN/LAN

Application
libraries

Librato OS
abstraction

OS

FIGURE 6.18

OS abstraction layer provided by Librato Availability Services.

300 CHAPTER 6 Addressing the Cloud Challenges

An other alternative to the checkpoint/restart method is for the applications
to work in a transactional paradigm. When an application instance fails,
some signal (e.g., closing of network connections) is sent to the other
instances, which abort all work in progress for the failed instance. When the
failed instance restarts, it restarts all transactions in progress. Additionally,
other instances restart any requests they made to the failed instance. For appli-
cations designed purely using a web services model, even subcomponents fall
in this second category. Web Services Transaction Specifications [59]
(WS_Coordination, WS_Atomic, WS_Transactions) define mechanisms and
protocols to be used by web services in order to be interoperable and execute
on any vendors web services platform.

SUMMARY

In this chapter, first, approaches to attack the cloud scalability challenge were
described both for compute as well as storage systems. For compute scalability, if the
application instances are independently scheduled on independent processors, then
just adding more servers can scale to a large number of clients. However, it is not
very common to find applications that are totally independent and have only one
process. Amdahl’s Law puts bounds on the amount by which an application can be
scaled. For 3-tier applications, there are two ways of scaling, by either adding com-
pute power to each of the tiers of the application or by breaking down the application
components in such a way that the individual components (application nodes) are
self-sufficient with adequate amounts of database and messaging bus. More sophisti-
cated coordination among distributed processes can be supported using a specialized
middleware such as ZooKeeper. Another approach that has been looked at to avoid
making the database as a bottleneck is to use noSQL or key-value pairs to store the
data and hence allow much more concurrency in data access.

The problems of scaling storage were also discussed. It was shown that the
CAP theorem implies that in any system with network partitioning, either con-
sistency or availability has to be given up. In many cases (e.g., where a finan-
cial balance has to be looked up) it may not be possible to give up consistency.
In those cases, the system may not be available during network partitions. If it
is possible to relax consistency requirements, various forms of weak consistency
can be guaranteed. One technique that can generally be used with any parti-
tioned storage system is asynchronous updates, where any partition that is
updated propagates its changes asynchronously to other partitions. However, to
guarantee correctness, it is necessary to carefully analyze the storage system and
the operations being performed. Additionally, the storage system itself may
provide guarantees, such as read after write consistency, which guarantees that
any read made after a write will reflect the change due to the write. In these
cases, the guarantees provided by the storage system can be used to ensure
correctness. To illustrate these principles, the usage of three storage systems

Summary 301

that offer weak consistency – HBase, MongoDB, and Dynamo/Cassandra – were
described.

Subsequently, the problem of multi-tenancy, or fine-grained resource sharing,
was considered. Multi-Tenancy is the major difference between the earlier technolo-
gies of ASPs (application service providers) and cloud SaaS systems, and the effi-
ciencies due to multi-tenancy are a major reason for the success of SaaS systems.
Multiple levels of multi-tenancy were discussed. However, it is not necessary for
all components of a cloud system to be at the highest and most efficient level of
multi-tenancy; it is only necessary that the most important components be at a high
level of multi-tenancy. Three methods of providing multi-tenancy – pre-allocated
columns, pivot tables, and XML columns – were considered. While pre-allocated
columns are not space-efficient, they are easy to work with and are efficient in com-
putation. The other two techniques, pivot tables and XML columns, are more space
efficient but less easy to work with. A detailed description of multi-tenancy in
Salesforce.com was presented to illustrate how these design trade-offs have been
made in a production-quality deployed system.

Finally, approaches taken to ensure high availability of cloud applications
were discussed. Availability can be at infrastructure level, platform level or
application level. Since this is a developer-oriented book, approaches to provide
application-level availability were discussed. Service-oriented applications can
adhere to the web services transaction specification to work in a transaction-
oriented manner, in which case, simply starting the applications from the begin-
ning will be sufficient for correct execution. In more complex cases, sophisti-
cated checkpoint-restart mechanisms need to be employed. Two methods of
checkpoint-restart were described: first, where the applications had to be recom-
piled/relinked in order to achieve transparent checkpointing, and second, a com-
mercial offering from Librato, which provided an OS abstraction for
application-independent checkpointing.

Some approaches to tackle the technical challenges posed by cloud computing
have been tried at the client side as well. In order to deliver good interactive
applications, use of client-side scripts (Javascript) that can perform asynchronous
operations to back-end services using AJAX (Asynchronous Javascript and XML)
is becoming more common. Here, the application running within a browser need
not necessarily refresh or submit a web page in order for the application to contact
the back-end cloud service, but can be performed instead by the client-side appli-
cation using a background thread. More recently, techniques used in Javascript
programming are being used even at the server end to create faster services. An
example of this is Node.JS technology [60] that is an open source server-side
event-driven Javascript environment that can handle parallel requests very well.
Due to its event-based model, all actions are non-blocking potentially enabling
maximum resource utilization. Event-driven models are also very good for high
availability due to the transaction semantics. Though a young project, Node.JS is
a promising technology that may address some of the key technical challenges of
the Cloud if the runtime is well implemented.

302 CHAPTER 6 Addressing the Cloud Challenges

http://www.Salesforce.com

References
[1] Michael M, Moreira JE, Shiloach D, Wisniewski RW. Scale-up x Scale-out: A Case

Study using Nutch/Lucene. IBM Thomas J. Watson Research Center, IEEE 2007.
[2] Nginx Home page. http://nginx.org/; [accessed 08.10.11].
[3] Nginx Books. http://nginx.org/en/books.html; [accessed 08.10.11].
[4] Scaling out Web Servers to Amazon EC2 using OpenNebula. https://support.opennebula.

pro/entries/366704-scaling-out-web-servers-to-amazon-ec2; [accessed 08.10.11].
[5] OpenNebula HomePage. http://www.opennebula.org/; [accessed 08.10.11].
[6] Open Cloud Computing Interface. http://occi-wg.org/; [accessed 08.10.11].
[7] Tannenbaum T, Litzkow M. The Condor distributed processing system. Dr. Dobbs

Journal. http://drdobbs.com/high-performance-computing/184409496; 1995 [accessed
October 2011].

[8] Integrating Public Clouds with OpenNebula for Cloudbursting. https://support
.opennebula.pro/entries/338165-integrating-public-clouds-with-opennebula-for-cloud-
bursting; [accessed 08.10.11].

[9] Rochwerger B, Caceres J, Montero RS, Breitgand D, Elmroth E, Galis, A et al. The
RESERVOIR model and architecture for open federated cloud computing. Wolfsthal
IBM J Res Dev 2009;53(4):1–11.

[10] Nurmi D, Wolski R, Grzegorczyk, C, et al. The Eucalyptus Open-source Cloud-
computing System. 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGRID 2009.

[11] Eucalyptus Open-Source Cloud Computing Infrastructure - An Overview, August
2009, A White Paper, Eucalyptus Systems, Inc.

[12] Zookeeper: A Reliable, Scalable Distributed Coordination System. http://highscalability
.com/blog/2008/7/15/zookeeper-a-reliable-scalable-distributed-coordination-syste.html;
[accessed 08.10.11].

[13] Deploying Zookeeper Ensemble. http://sanjivblogs.blogspot.com/2011/04/deploying-
zookeeper-ensemble.html; [accessed 08.10.11].

[14] Zookeeper Wiki. https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index;
[accessed 08.10.11].

[15] PaxosRun. https://cwiki.apache.org/confluence/display/ZOOKEEPER/PaxosRun;
[accessed 08.10.11].

[16] The Two-Phase Commit protocol. http://msdn.microsoft.com/en-us/library/cc941904
(v=prot.10).aspx; [accessed 0810.11].

[17] Zookeeper Home page. http://zookeeper.apache.org/; [accessed 08.10.11].
[18] Lindsay BG. Notes on Distributed Databases, http://ip.com/IPCOM/000149869; 1979

[accessed 08.10.11].
[19] Brewer, E. A. Towards robust distributed systems (Invited Talk), Principles of Distrib-

uted Computing, Portland, Oregon. Also http://www.eecs.berkeley.edu/~brewer/
cs262b-2004/PODC-keynote.pdf; 2000 [accessed 08.10.11].

[20] Lynch N, Gilbert S. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. ACM SIGACT News 2002;33(2):51–59.

[21] Pritchett D. BASE: An Acid Alternative. ACM Queue 2008;6(3)May/June.
[22] Vogels W. Eventually consistent. Commun ACM 2009;52(1):40–44.
[23] Abadi D. Problems with CAP, and Yahoo’s little known NoSQL system. http://

dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html;
[accessed 08.10.11].

References 303

http://nginx.org/
http://nginx.org/en/books.html
https://support.opennebula.pro/entries/366704-scaling-out-web-servers-to-amazon-ec2
https://support.opennebula.pro/entries/366704-scaling-out-web-servers-to-amazon-ec2
http://www.opennebula.org/
http://occi-wg.org/
http://drdobbs.com/high-performance-computing/184409496
https://support.opennebula.pro/entries/338165-integrating-public-clouds-with-opennebula-for-cloudbursting
https://support.opennebula.pro/entries/338165-integrating-public-clouds-with-opennebula-for-cloudbursting
https://support.opennebula.pro/entries/338165-integrating-public-clouds-with-opennebula-for-cloudbursting
http://highscalability.com/blog/2008/7/15/zookeeper-a-reliable-scalable-distributed-coordination-syste.html
http://highscalability.com/blog/2008/7/15/zookeeper-a-reliable-scalable-distributed-coordination-syste.html
http://sanjivblogs.blogspot.com/2011/04/deploying-zookeeper-ensemble.html
http://sanjivblogs.blogspot.com/2011/04/deploying-zookeeper-ensemble.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Index
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PaxosRun
http://msdn.microsoft.com/en-us/library/cc941904(v=prot.10).aspx
http://msdn.microsoft.com/en-us/library/cc941904(v=prot.10).aspx
http://zookeeper.apache.org/
http://ip.com/IPCOM/000149869
http://www.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

[24] Trading Consistency for Scalability in Distributed Architectures, Floyd Marinescu &
Charles Humble. http://www.infoq.com/news/2008/03/ebaybase;jsessionid=A7D8F82180
426608EE396765D73B1A5C; [accessed 08.10.11].

[25] Stonebraker M. Clarifications on the CAP Theorem and Data-Related Errors. http://
voltdb.com/company/blog/clarifications-cap-theorem-and-data-related-errors; [accessed
08.10.11].

[26] Java Transaction API. http://www.oracle.com/technetwork/java/javaee/jta/index.html;
[accessed 08.10.11]

[27] Comparing NoSQL Availability Models, Adrian Cockcroft. http://perfcap.blogspot.com/
2010/10/comparing-nosql-availability-models.html; 2010 [accessed 08.10.11].

[28] The Apache HBase Book, Chapter 10: Architecture. http://hbase.apache.org/book.
html#architecture; [accessed 08.10.11].

[29] Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows, M et al. Bigtable:
A distributed storage system for structured data. ACM Trans Comput Syst 2008;26(2).

[30] MongoDB Replication, Dwight Merriman. http://www.slideshare.net/mongosf/
mongodb-replication-dwight-merriman; [accessed 08.10.11].

[31] Replica Sets – Basics. http://www.mongodb.org/display/DOCS/Replica+Sets+-+Basics;
[accessed 08.10.11].

[32] Replica Sets – Voting. http://www.mongodb.org/display/DOCS/Replica+Sets+-+Voting;
[accessed 08.10.11].

[33] Replica Sets – Oplog. http://www.mongodb.org/display/DOCS/Replica+Sets+-+Oplog;
[accessed 08.10.11].

[34] Why Replica Sets. http://www.mongodb.org/display/DOCS/Why+Replica+Sets;
[accessed 08.10.11].

[35] Replica Set FAQ. http://www.mongodb.org/display/DOCS/Replica+Set+FAQ;
[accessed 08.10.11].

[36] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin, A et al.
Dynamo: Amazon’s highly available keyvalue store. Proceedings of twenty-first ACM
SIGOPS Symposium on Operating systems principles, New York, NY; 2007.

[37] NoSQL Netflix Use Case Comparison for Cassandra. http://perfcap.blogspot.com/
2010/10/nosql-netflix-use-case-comparison-for.html; 2010 [accessed 08.10.11].

[38] NoSQL Netflix Use Case Comparison for MongoDB. http://perfcap.blogspot.com/
2010/10/nosql-netflix-use-case-comparison-for_31.html; 2010 [accessed 08.10.11].

[39] NoSQL Netflix Use Case Comparison for Riak. http://perfcap.blogspot.com/2010/11/
nosql-netflix-use-case-comparison-for.html; 2010 [accessed 08.10.11].

[40] NoSQL Netflix Use Case Comparison for Translattice. http://perfcap.blogspot.com/
2010/11/nosql-netflix-use-case-comparison-for_17.html; 2010 [accessed 08.10.11].

[41] Jacobs D, Aulbach S. Marz 2007. Ruminations on Multi-Tenant Databases. 12.GI-
Fachtagung fur Datenbanksysteme in Business, Technologie und Web (BTW 2007), 5
bis 9, Aachen, Germany.

[42] Chong F, Carraro G. Architecture strategies for caching the long tail. http://msdn2
.microsoft.com/en-us/library/aaa479060(printer).aspx; [accessed 08.10.11].

[43] Drools - The Business Logic integration Platform. http://www.drools.org; [accessed
08.10.11].

[44] Linden TA. December 1976. Capability-based addressing.
[45] Aulbach S, Grust T, Jacobs D, Kemper A, Rittinger J, 2008. Multi-Tenant Databases for

Software as a Service: Schema-Mapping Techniques. ACM SIGMOD’08, June 9–12.
Vancouver, BC: Canada; 2008.

304 CHAPTER 6 Addressing the Cloud Challenges

http://www.infoq.com/news/2008/03/ebaybase;jsessionid=A7D8F82180426608EE396765D73B1A5C
http://www.infoq.com/news/2008/03/ebaybase;jsessionid=A7D8F82180426608EE396765D73B1A5C
http://voltdb.com/company/blog/clarifications-cap-theorem-and-data-related-errors
http://voltdb.com/company/blog/clarifications-cap-theorem-and-data-related-errors
http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://perfcap.blogspot.com/2010/10/comparing-nosql-availability-models.html
http://perfcap.blogspot.com/2010/10/comparing-nosql-availability-models.html
http://hbase.apache.org/book.html#architecture
http://hbase.apache.org/book.html#architecture
http://www.slideshare.net/mongosf/mongodb-replication-dwight-merriman
http://www.slideshare.net/mongosf/mongodb-replication-dwight-merriman
http://www.mongodb.org/display/DOCS/Replica+Sets+-+Basics
http://www.mongodb.org/display/DOCS/Replica+Sets+-+Voting
http://www.mongodb.org/display/DOCS/Replica+Sets+-+Oplog
http://www.mongodb.org/display/DOCS/Why+Replica+Sets
http://www.mongodb.org/display/DOCS/Replica+Set+FAQ
http://perfcap.blogspot.com/2010/10/nosql-netflix-use-case-comparison-for.html
http://perfcap.blogspot.com/2010/10/nosql-netflix-use-case-comparison-for.html
http://perfcap.blogspot.com/2010/10/nosql-netflix-use-case-comparison-for_31.html
http://perfcap.blogspot.com/2010/10/nosql-netflix-use-case-comparison-for_31.html
http://perfcap.blogspot.com/2010/11/nosql-netflix-use-case-comparison-for.html
http://perfcap.blogspot.com/2010/11/nosql-netflix-use-case-comparison-for.html
http://perfcap.blogspot.com/2010/11/nosql-netflix-use-case-comparison-for_17.html
http://perfcap.blogspot.com/2010/11/nosql-netflix-use-case-comparison-for_17.html
http://msdn2.microsoft.com/en-us/library/aaa479060(printer).aspx
http://msdn2.microsoft.com/en-us/library/aaa479060(printer).aspx
http://www.drools.org

[46] Aulbach S, Jacobs D, Kemper A, Seibold M. A Comparison of Flexible Schemas for
Software as a Service. ACM SIGMOD’09: Providence, Rhode Island, USA; 2009.

[47] Chong F, Carraro G, Nolter R. Multi-tenant data architecture. http://msdn.microsoft.com/
en-us/library/aa479086.aspx; [accessed 08.10.11].

[48] Agrawal R, Somani A, Xu Y. Storage and Querying of E-Commerce Data. Proceed-
ings of the 27th VLDB Conference, Roma, Italy; 2001. p. 149–158.

[49] Salesforce.com: The Force.com Multitenant Architecture. http://www.apexdevnet.com/
media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf; [accessed
08.10.11].

[50] Weissman CD, Bobrowski S. The design of the force.com multitenant internet appli-
cation development platform. ACM SIGMOD’09: Providence, Rhode Island, USA.

[51] O’Malley O, Zhang K, Radia S, Marti Ram, Harrell C, 2009. Hadoop Security Design.
Yahoo! Inc. https://issues.apache.org/jira/secure/attachment/12428537/security-design.pdf;
2009 [accessed 08.10.11].

[52] Walla M. Kerberos Explained. Microsoft TechNet. http://technet.microsoft.com/en-us/
library/bb742516.aspx; [accessed 08.10.11].

[53] Becherer A. Hadoop Security Design. iSec Partners, Black Hat USA 2010, Las Vegas,
July 28-29. https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-
2010-Becherer-Andrew-Hadoop-Security-wp.pdf; [accessed 08.10.11].

[54] O’Malley O, Zhang K, Radia S, Marti R, Harrell C. Yahoo!. Hadoop Security Design.
https://issues.apache.org/jira/secure/attachment/12428537/security-design.pdf; 2009
[accessed 08.10.11].

[55] Abraham S, Thomas M, Thomas J. Enhancing Web Services Availability. IEEE Inter-
national Conference on e-Business Engineering (ICEBE’05).

[56] LAN SSI Checkpoint, Ubuntu manual. http://manpages.ubuntu.com/manpages/hardy/
man7/lamssi_cr.7.html; [accessed 08.10.11].

[57] Berkeley Lab Checkpoint/Restart (BLCR) User’s Guide. https://upc-bugs.lbl.gov//blcr/
doc/html/BLCR_Users_Guide.html; [accessed 08.10.11].

[58] Librato Availability Services. http://www.hp.com/techservers/hpccn/hpccollaboration/
ADCatalyst/downloads/Librato_AvS_ds.pdf; [accessed 08.10.11].

[59] Web Services Transactions Specifications, IBM, BEA Systems, Microsoft, Arjuna,
Hitachi, IONA. http://www.ibm.com/developerworks/library/specification/ws-tx/;
[accessed 08.10.11].

[60] NodeJS Home page. http://nodejs.org/; [accessed 08.10.11].

References 305

http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://wwww.Salesforce.com
http://www.Force.com
http://www.apexdevnet.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf
http://www.apexdevnet.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf
http://www.Force.com
https://issues.apache.org/jira/secure/attachment/12428537/security-design.pdf
http://technet.microsoft.com/en-us/library/bb742516.aspx
http://technet.microsoft.com/en-us/library/bb742516.aspx
https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
http://www.drools.org
http://manpages.ubuntu.com/manpages/hardy/man7/lamssi_cr.7.html
http://manpages.ubuntu.com/manpages/hardy/man7/lamssi_cr.7.html
https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Users_Guide.html
https://upc-bugs.lbl.gov//blcr/doc/html/BLCR_Users_Guide.html
http://www.hp.com/techservers/hpccn/hpccollaboration/ADCatalyst/downloads/Librato_AvS_ds.pdf
http://www.hp.com/techservers/hpccn/hpccollaboration/ADCatalyst/downloads/Librato_AvS_ds.pdf
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://nodejs.org/

This page intentionally left blank

CHAPTER

7Designing Cloud Security

INFORMATION IN THIS CHAPTER:

• Cloud Security Requirements and Best Practices

• Risk Management

• Security Design Patterns

• Security Architecture Standards

• Legal and Regulatory Issues

• Selecting a Cloud Service Provider

• Cloud Security Evaluation Frameworks

INTRODUCTION1

Cloud security has unique challenges arising from the use of a shared infrastruc-
ture, and rapid movement of servers and workload in the infrastructure. If Tom
Hacker has an account on a cloud service provider, the security of all the data
stored in the cloud would depend upon the ability of the cloud provider to with-
stand the attacks from Tom Hacker. An example is the attack on Twitter [1]
where a hacker broke into support tools used by Twitter support, and used the
tools to compromise the accounts of many celebrities. Clearly, if the celebrities
had not used a shared infrastructure, the attack would not have been successful.

The security of a cloud infrastructure depends upon both the technology as
well as the processes and practices in place. For example, not writing down pass-
words is a strongly recommended security practice. But the most advanced secur-
ity technologies are useless if system administrators do not follow this practice,
and leave written passwords in easily accessible places! Some aspects of Cloud
security at a technology level has been covered in the earlier chapters. For exam-
ple, Chapter 2 describes how cryptographic keys are used for security in Amazon,
Chapter 3 describes the security features of Azure, Chapter 4 describes how
OAuth can be used to grant permission to access personal information on Face-
book and Chapter 6 describes the security controls available in MapReduce. The
focus of this chapter is on the non-technological aspects of security; i.e., on

1This chapter is abridged from the book “Securing the Cloud” by Vic (J.R.) Winkler.

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00007-X
© 2012 Elsevier, Inc. All rights reserved.

307

http://dx.doi.org/10.1016/B978-1-59749-725-1.00007-X

processes and practices. The practices also include good design principles to follow
when designing a cloud infrastructure (e.g., on the necessity of having a security
server for monitoring).

This chapter first looks at the requirements for cloud security and the design of
a secure infrastructure for a cloud. Subsequently, the topic of risk management,
which consists of assessing the various threats and designing security measures to
handle them, is discussed. Next, some useful design patterns that can be used to
ensure cloud security are examined. An example of security design for a PaaS
system using these design patterns is included. A number of standard cloud secur-
ity architectures that can be leveraged for implementing cloud security are then
discussed.

The next part of the chapter discusses security issues involved in public
clouds, since this is an area of great interest to all skeptics as of this writing.
First, legal and regulatory issues in using public clouds are discussed. This is fol-
lowed by a section on the criteria that can be used for selecting a cloud service
provider based on security. This is followed by procedures for evaluating cloud
service provider security developed by standards bodies, which can be used to
supplement the security criteria discussed earlier.

CLOUD SECURITY REQUIREMENTS AND BEST PRACTICES
The cloud consists of a shared infrastructure that can be rapidly configured on
demand to meet business needs. At a high level, the cloud infrastructure can be
partitioned into a physical infrastructure, and a virtual infrastructure. The security
requirements and best practices can also similarly be divided into the requirements
for physical security and those for virtual security.

The basic objectives of cloud security are to ensure the confidentiality, integrity
and availability of the cloud system. Confidentiality implies that there is no
unauthorized access to functions of the cloud system. Integrity requires that the
cloud system be protected against tampering (e.g., against implanting of viruses
that steal passwords or corruption of data). The availability requirement is that the
system should not be made unavailable by, for example, a denial of service attack
that puts a great deal of load on the system, preventing legitimate users from using
the system. In addition, the above objectives may also be impacted by legal require-
ments. For example, if the system stores health-related data, certain levels of confi-
dentiality may be legally mandated. Therefore, the cloud system should be able to
support the required legal constraints.

From a pragmatic view, there are a number of additional objectives that also
need to be taken into account when designing cloud security. These include:

i. Cost-effectiveness: Security implementation should not greatly increase the
cost of a cloud solution.

ii. Reliability and performance: Also should not be greatly impacted by cloud
security.

308 CHAPTER 7 Designing Cloud Security

Physical Security
Physical security implies that the data center the cloud is hosted in should be secure
against physical threats. This includes not only attempts at penetration by intruders,
but also protection against natural hazards and disasters such as floods, and human
error such as switching off the air conditioning. It is important to note that security is
only as strong as its weakest link. An interesting example of this is provided in Secur-
ing the Cloud [2], which describes a public grid computing data center built in London
on the site of an old brewery, which had very thick walls. However, the street entrance
to the facility was faced with un-reinforced glass that could easily be broken, and an
unsecured window to a restroom within the facility was within easy reach of a ladder.

To ensure physical security, a multi-layered system is required. This includes:

i. A central monitoring and control center with dedicated staff
ii. Monitoring for each possible physical threat, such as intrusion, or natural

hazards such as floods
iii. Training of the staff in response to threat situations
iv. Manual or automated back-up systems to help contain threats (e.g., pumps to

help contain the damage from floods)
v. Secure access to the facility. This requires that the various threats to the data

center be identified, and appropriate procedures derived for handling these threats.

Virtual Security
The following best practices have been found to be very useful in ensuring cloud
security.

Cloud Time Service
If all systems in the datacenter are synchronized to the same clock, this is helpful
both to ensure correct operation of the systems, as well as to facilitate later analy-
sis of system logs. It is particularly important in correlating events occurring
across geographically distributed systems. A common way to do this is by use of
the Network Time Protocol (NTP). NTP is a protocol that synchronizes the
clock on a computer to a reference source on the Internet [1]. To protect against
false reference sources, the protocol messages can be encrypted. Due to the impor-
tance of having a common timeline, there should be at least two paths to reliable
time sources (such as WWV and GPS), and the time sources should be verifiable.

Identity Management
Identity management is a foundation for achieving confidentiality, integrity and
availability. Some of the requirements for identity management are that:

i. It should scale to the number of users typically found in a cloud system
ii. Due to possible heterogeneity in cloud systems, a federated identity

management system that allows establishing a single identity and single sign-
on across multiple different types of systems may be needed.

Cloud Security Requirements and Best Practices 309

iii. The identity management system should satisfy applicable legal and policy
requirements (for example, allow deleting of users across the system within a
specified time period)

iv. Maintain historical records for possible future investigation.

Access Management
The core function of access management is to allow accesses to cloud facilities
only to authorized users. However, additional requirements are to:

i. Not allow unrestricted access to cloud management personnel
ii. Allow implementation of multi-factor authentication (e.g., use of a password

together with a digital key) for very sensitive operations.

It is also good practice to:

i. Disallow shared accounts, such as admin
ii. Implement white-listing of IP addresses for remote administrative actions.

Break-Glass Procedures
It is desirable for the access management system to allow alarmed break-glass
procedures, which bypass normal security controls in emergency situations. The
analogy is with breaking the glass to set off a fire alarm. Clearly, it is important
to ensure that the break-glass procedure can be executed only in emergencies
under controlled situations, and that the procedure triggers an alarm.

Key Management
In a cloud, with shared storage, encryption is a key technology to ensure isolation
of access. The cloud infrastructure needs to provide secure facilities for the
generation, assignment, revocation, and archiving of keys. It is also necessary to
generate procedures for recovering from compromised keys.

Auditing
Auditing is needed for all system and network components. The audit should cap-
ture all security-related events, together with data needed to analyze the event
such as the time, system on which the event occurred, and userid that initiated the
event. The audit log should be centrally maintained and secure. It should be possi-
ble to sanitize or produce a stripped-down version of the audit log for sharing
with cloud customers, in case their assistance is needed to analyze the logs.

Security Monitoring
This includes an infrastructure to generate alerts when a critical security event has
occurred, including a cloud-wide intrusion and anomaly detection system. The
intrusion detection systems may be installed both on the network as well as the
host nodes. It may also be necessary to allow cloud users to implement their own
intrusion and anomaly detection systems.

310 CHAPTER 7 Designing Cloud Security

Security Testing
It is important to test all software for security before deployment in an isolated
test bed. Patches to software should also be tested in this environment before
being released into production. Additionally, security testing should be carried out
on an ongoing basis to identify vulnerabilities in the cloud system. Depending
upon the risk assessment, some of these tests may be carried out by third parties.
There should also be a remediation process to fix identified vulnerabilities.

RISK MANAGEMENT
Risk management is the process for evaluating risks, deciding how they are to be
controlled, and monitoring their operation. Since risk management is important in
identifying the important security threats to the system, it is discussed before
describing how to implement security for a cloud.

When managing risk, a number of factors need to be kept in mind. First, the
suitable approaches in different domains (e.g., finance and healthcare) may be dif-
ferent. As a result, the appropriate security measures may also vary significantly.
Second, in attempting to provide the best security, it is not effective to implement
every possible security measure, as this could result in making the system very
difficult to use. Rather, there should be a careful trade-off between the impact of
the risks involved, and the cost of the security measure, measured both in terms
of impact to usage of the system as well as the actual cost of security. For a sys-
tem which is already secure to a great extent, increasing security measures pro-
duces increasingly lower returns. Therefore, risk management is a business
decision that balances the benefits of increased security against the cost.

Risk Management Concepts
The following is an overview of some of the important concepts used in risk man-
agement. Central to the risk management process is the idea of deploying security
controls in information systems depending upon the security requirement of the sys-
tem. A security control is a safeguard (process or system function) to prevent,
detect or respond to a security risk. NIST divides security controls into three broad
categories – Technical, Operational, and Management [3]. The controls in each
category are further sub-divided into 18 families. As an example, Audit and
Accountability is one of the families, and Response to Audit Processing Failures
(which, as the name implies, is how the appropriate organization will respond to an
audit processing failure) is one of the security controls in this family.

The other key concept is the security requirement of the system, defined in the
FIPS 200 standard [4]. FIPS 200 defines the security requirement of the system as
low-impact, moderate impact, or high-impact depending upon the impact of
a security breach in the system. The motivation behind this definition is that
high-impact systems have the greatest requirement in terms of security controls.

Risk Management 311

A system is defined to be a low-impact system if the result of a security breach is
that there is a limited degradation in capability, but the system is able to perform
its primary functions. Moderate impact systems are those where the system is
able to perform its primary functions, but there is a significant degradation in the
functions; while high impact systems are those where the system is incapable of
performing some of its primary functions. More details regarding both security
controls and security requirements can be found in Securing the Cloud [2].

Risk Management Process
The following is a risk management process detailed in the chapter titled “Cloud
Security Architecture Standards” in the book Securing the Cloud [2]. This process
is based upon work in NIST 800-53 [3] and the ISO 27000 standards.

1. Information Resource Categorization: The first step is to evaluate each
information resource in the organization from the perspectives of:
a. Criticality – the impact to the business of a security failure
b. Sensitivity – the confidentiality of the resource
This evaluation will determine the level of security to be provided for each
resource. Consider a cloud infrastructure where there is a separate management
network for managing the cloud, and a user network for the use of the cloud
applications and users. In this scenario, the management network is more criti-
cal than the user network accessed by users, since a successful attack on the
management network would allow an intruder to take over the entire cloud
infrastructure.

2. Select Security Controls: Next, security controls appropriate to the criticality
and sensitivity of the information resources need to be selected. In the
example given earlier, the management network may be protected by
whitelisting IP addresses (i.e., allowing only machines with certain pre-
registered IP addresses to be on the management network; these IP addresses
will generally be for machines physically inside the work premises). Here,
whitelisting IP addresses is a security control, and forces administrators to
work only from within office premises, which may be an acceptable security
measure. This control may not be appropriate for the user network. If the user
network is also protected by whitelisting IP addresses, the user would have to
register a new IP address for whitelisting each time they go to a new location
and try to access the corporate network.

3. Risk Assessment: After deciding upon the security controls to be
implemented, it is necessary to determine if the controls provide adequate
protection against the anticipated threats, and to augment the controls if more
protection is needed.

4. Implement Security Controls: Next, the security controls decided upon
would need to be implemented. These security controls may be administrative,
technical or physical. The example presented earlier is an example of a
technical security control.

312 CHAPTER 7 Designing Cloud Security

5. Operational Monitoring: Once the security controls are implemented, their
effectiveness in operation should be continuously monitored.

6. Periodic Review: The security controls in place should be periodically
reviewed to determine if they continue to be effective. The need for review
comes from the fact that:
a. New threats may appear
b. Operational changes (e.g., new software) may result in requiring a change

in security design.

SECURITY DESIGN PATTERNS
After the discussion of cloud security requirements, and the discussion of risk
management, the following are several design patterns that can be leveraged for
constructing a secure cloud. A design pattern is a class or category of designs that
can be customized to fit a particular situation.

Defense in Depth
This is a well-known design principle that has been in use for many years, for
example, in the design of castles and fortresses. It states that defenses should be
layered, so that an attacker has to overcome multiple defenses before gaining
access to important resources. Medieval castles, for example, were typically
guarded by a moat in addition to a drawbridge. After crossing the drawbridge, the
entrance to the castle would be through a narrow entrance guarded by a heavy
gate. In a similar way, remote administrative access to a cloud system could be
allowed only through a VPN. For further protection, this access could be allowed
only from white-listed IP addresses. Furthermore, an administrator may be
required to provide a one-time password for additional security.

Honeypots
A honeypot is a decoy computer system that appears attractive to an attacker.
While the attacker is attacking the honeypot under the impression that it is a worth-
while system to control, they can be observed by security personnel who can then
attempt to trap and control the attack. Honeypots are widely used in network secur-
ity. In the cloud context, a honeypot virtual machine can be deployed, which would
monitor any suspicious attempt to break into the virtual machine. Honeypots can be
deployed both by the cloud service provider as well as cloud customers.

Sandboxes
Sandboxing refers to a technique in which software is executed in a restricted
environment inside the operating system in which it is running. Since the software
is being executed in a restricted environment, an attacker who breaks into the

Security Design Patterns 313

software does not have unrestricted access to the facilities provided by the operat-
ing system. This limits the amount of damage an attacker who has gained control
of the software can do; additionally, the attacker has to overcome the sandbox if
they have to gain full control over the operating system. Sandboxes thus provide
defense in depth as well. As described in Chapter 3, many PaaS systems come
with a runtime environment the core of which is an application sandbox, such as
in Azure and Google App Engine.

Network Patterns
In addition to ensuring isolation in the computing elements and storage, it is also
necessary to ensure isolation in the network.

VM Isolation
New techniques have to be used to isolate traffic between VMs that share the
same physical hardware, since this traffic does not enter the switching network.
The solution in this case depends upon the security features offered by the VM,
and could include:

i. Encryption of traffic between VMs
ii. Tightened security controls on VMs, such as the ports that will accept traffic.

Subnet Isolation
It is good practice to have physically separate traffic for administrative network traf-
fic, customer network elements, and storage networks. Physically separate networks
are preferred due to the possibility of mis-configuration in virtual LANs (VLAN)
that are not physically separate. However, this is likely to drive up costs, so a trade-
off may be needed. Routing between the networks can be handled by firewalls.

Common Management Database
A Common Management Database (CMDB) is a database that contains infor-
mation regarding the components of an IT system. The information includes an
inventory of the components, as well as their present configuration and status.
The presence of a CMDB simplifies implementation and management of an infra-
structure, including security, since it ensures that all administrative components
have a single consistent view of all the components. A CMDB is even more
essential in a cloud infrastructure, due to the extreme dynamism of cloud comput-
ing, where applications may migrate from one server to another, and the actual
physical resources used by an application may change very rapidly.

Example: Security Design for a PaaS System
The following is an example of the security design for a PaaS system consisting
of a DBMS and an Identity Management server (see Figure 7.1). The scenario

314 CHAPTER 7 Designing Cloud Security

being considered is that of a cloud service provider who wants to expose a DBMS
via the cloud as a PaaS (and DaaS) offering. The design satisfies the cloud secur-
ity requirements discussed earlier, and leverages the design patterns presented.

External Network Access
Figure 7.1 shows that there are two entry points into the cloud network. The first
is the access to the control network for administration. The second is the interface
used for public access to the cloud services. For the purposes of security, these
two access points are distinct, and lead to separate physical networks. To provide
defense in depth, the control network access can be limited to whitelisted IP
addresses (as described earlier, these are pre-registered addresses that are generally
from the subnet reserved for machines on the office premises). Multi-factor
authentication can be made mandatory for increasing secure access to administra-
tive functions. The access to the public network is via two switches, to increase
availability via redundancy.

Internal Network Access
As seen in Figure 7.1, the management network is physically separated from the
public (or user) network, in order to reduce the risk of an attacker accessing the
cloud via the public network and attempting to access the management network.
The DBMS is connected to the public network via an aggregated set of links to
provide increased bandwidth as well as availability. The DBMS server may be
accessed from the internal PaaS service as well. Similarly, the PaaS service may

R
estricted
access

P
ublic

internet

Access to control
network

Access to user
network

Core network
Database

CMDB

Security
service

Identity
service

PaaS

FIGURE 7.1

PaaS security design.

Security Design Patterns 315

also be accessed from both the internal network as well as the external network.
However, the security server, which performs audit and other security functions,
need not be accessible from the external network.

Server Security
Since the example system is a PaaS system, the database server is managed by the
cloud provider, and the database is offered as a service to the customers. Access
to the cloud services can be managed via the identity server shown together with
access control. Hence, the security of the database is managed by the cloud ser-
vice provider. Database isolation can be obtained by using some of the approaches
to multi-tenancy described in Chapter 6, Addressing the Cloud Challenges. The
database itself can be secured by disallowing access to unneeded ports in the ser-
ver, and by implementing an intrusion detection system on the server hosting the
database. An additional security layer can be implemented by checking the ODBC
connections to the database.

Security Server
The diagram also includes a security server to perform security services, including
auditing, monitoring, hosting a security operations center, and security scanning
of the cloud infrastructure.

SECURITY ARCHITECTURE STANDARDS
As stated previously, to secure a cloud it is necessary to systematically build
security into processes and components of a cloud. The following are a variety of
standard and well-known security architectures for cloud computing that can be
leveraged for this purpose. For greater detail, please see Securing the Cloud [2].

SSE-CMM
The System Security Engineering Capability Maturity Model is an adaption of
the well-known Capability Maturity Model (CMM) for software engineering by
Carnegie Mellon University [5]. It is the basis of the ISO/IEC 21827 standard.
Similarly to CMM, it defines five capability levels for any organization, and allows
organizations to assess themselves, and put in place processes to improve their
levels. The SSE-CMM model is not specific to cloud security.

ISO/IEC 27001-27006
This is a set of related standards under the ISO/IEC 27000 family that provides an
Information Security Management System. It is fundamentally different from SSE-
CMM, which is a maturity model. While SSE-CMM allows each organization to
evaluate how secure their processes are, it does not specify what that process is.

316 CHAPTER 7 Designing Cloud Security

In contrast, the ISO/IEC 27000 family of standards specifies a set of requirements
that organizations must satisfy (e.g., there should be a process to systematically
evaluate information security risks). The ISO/IEC 27000 family of standards is
not specific to cloud security.

European Network and Information Security Agency (ENISA)
The Cloud Computing Information Assurance Framework from ENISA is a
set of assurance criteria designed to assess the risk of adopting cloud services,
compare different Cloud Provider offers, obtain assurance from the selected cloud
providers, and reduce the assurance burden on cloud providers [6]. It is based
upon applying ISO/IEC 27001-27006 to cloud computing. There is a larger num-
ber of assurance criteria defined under the report Cloud Computing Benefits,
Risks, and Recommendations for Information Security [7] which, in addition to
assurance criteria, offers an assessment of the benefits and risks of cloud
computing.

ITIL Security Management
ITIL (the Information Technology Infrastructure Library) is a well-known
and comprehensive set of standards for IT service management. It was originally
a set of recommendations developed by the U.K. government’s Central Computer
and Telecommunications Agency. The section on security management is based
upon ISO/IEC 27002. An advantage of using ITIL Security Management is that
ITIL itself is very common in many data centers, hence the use of ITIL-SM will
have a smaller learning curve and result in an integrated security solution.

COBIT
ISACA,2 an international organization devoted to the development of IT govern-
ance standards [8], has developed the Control Objectives for Information and
Related Technology [9]. This is a set of processes and best practices for linking
business goals to IT goals, together with metrics and a maturity model. COBIT is
broader in scope than ISO/IEC 27000, since it relates to IT governance.

NIST
The US National Institute of Standards and Technology has a number of whitepa-
pers and other resources in its Security Management & Assurance working group
[10]. These are targeted at U.S. federal agencies; however, many of the recommen-
dations will apply to other organizations as well. The reader may recall that NIST
has been very heavily referenced in this book starting from Chapter 1.

2The original expansion of the acronym ISACA is no longer used, and ISACA is simply known by
its acronym.

Security Architecture Standards 317

LEGAL AND REGULATORY ISSUES
Cloud computing may involve additional legal and regulatory issues due to the pos-
sible involvement of a third party – the cloud service provider. It is important to
note that the law may not apply in the same way to a cloud service provider as it
does to an enterprise. For example, considering health data collected by a business
to which HIPAA is applicable, the business that collects the data is responsible for
ensuring that HIPAA is followed even if part of the business’ IT infrastructure is in
the cloud of a private cloud provider. Therefore, it is important to understand how
the laws apply to different parties under various scenarios. Of particular importance
are laws around any data that may be collected. Since local, national, and
international laws may apply (due to the geographical distribution of the cloud
infrastructure) it is important to consider the impact of these laws as well in detail.

NOTE
Legal Issues
• Covering third-party risks
• Data-handling issues
• Litigation-related issues

COBIT and Safe Harbor are examples of laws that apply if the enterprise has
operations in the USA, Canada or the EU. These laws apply to the storage and
transfer of data, as well as its protection. Other applicable laws, such as the Health
Insurance Portability and Accountability Act (HIPAA), apply mainly in specific
domains such as the health care industry. However, since enterprises sometimes
store employee health information, some of the enterprise data may be subject to
HIPAA even though the enterprise itself may not be in the health care industry.

The laws and regulations will typically specify who is responsible for the accu-
racy and security of the data. HIPAA requires that there be a particular official
who is responsible for ensuring compliance. The Sarbanes-Oxley act, on the other
hand, jointly designates the CFO and CEO of the enterprise. Failure to comply
with the appropriate laws could, of course, lead to the imposition of penalties and
fines by regulatory bodies, as well as prosecution of officials held responsible for
complying with the laws. Legal penalties can be substantial in themselves, particu-
larly for small and medium business. For example, the Payment Card Industry
Security Standards Council can impose fines up to $100,000 per month.

The rest of this section examines typical issues that arise from the applications
of these laws. The focus is on US and EU laws, but laws in other countries are
frequently similar. First, covering the risks arising from the presence of a third
party (the cloud service provider) is considered. The second set of issues arises
from the need for ensuring data security. The third set of issues deals with the
obligation of the cloud service provider during litigation. These are described in
more detail in Securing the Cloud [2].

318 CHAPTER 7 Designing Cloud Security

Third-party Issues
Third-party issues arise when obtaining service from a public cloud service provi-
der. Legally, it is an enterprise’s responsibility to ensure that all subcontractors
obey the appropriate laws; i.e., if a subcontractor is found to be guilty of violating
a law such as HIPAA, the enterprise cannot plead ignorance. The primary method
for ensuring this is the contract with the subcontractor and its implementation.
The contract with the subcontractor must specify that the subcontractor will com-
ply with all applicable laws, and that these obligations will be imposed on subse-
quent subcontractors (i.e., if the subcontractor, in turn, subcontracts parts of their
contract to another party). However, mere signing of a contract is not sufficient;
adequate monitoring of the implementation is also needed. These are considered
in more detail below, in the order in which they would arise.

NOTE
Third-party Issues
• Due diligence
• Contract negotiation
• Implementation
• Termination

Contractual Issues
Due diligence
The enterprise should define the scope of the cloud services needed (e.g., would it
include any health-related data to which HIPAA is applicable), and then specify
the regulations and compliance standards that need to be adhered to (HIPAA if
any health-related data is to be stored in the cloud). The process of due diligence
may rule out a cloud service provider (because they are not able to satisfy the
applicable laws) or limit the scope of the cloud service that can be utilized
(because no cloud service provider is able to provide the appropriate level of
security and control).

While the focus in this section is on due diligence to handle legal risks arising
out of the presence of a third party, it should be clear that the due diligence pro-
cess should also consider risks arising from the stability and reliability of the
cloud service provider (e.g., are they likely to exit the cloud service market) and
the criticality of the business function being outsourced. More details can be
found in Securing the Cloud [2].

Contract negotiation
The next phase after the due diligence process is to negotiate a contract with the
cloud service provider. Unlike traditional outsourcing contracts, it is possible that
cloud service providers may have a standard online click-through agreement that
is not customizable. This is at least partly due to the economics of cloud

Legal and Regulatory Issues 319

computing, which favor standardization. In many cases, where the risk is low, a
standardized agreement may be acceptable.

One way cloud service providers can avoid having to negotiate custom agree-
ments with each customer is through external accreditation. For example, the
American Institute of Certified Public Accountants [11] provides a certification
known as the Statement on Auditing Standards or SAS 70 for service organiza-
tions. This certifies that the service organization has been audited by an external
auditor and that the organization follows adequate controls and safeguards when
handling data from multiple customers. Therefore businesses can examine the
security certifications obtained by the cloud service provider in order to determine
compliance with applicable laws.

Implementation
Next, the enterprise has to ensure that the safeguards laid out in the contract are
actually being followed. For example, if sensitive data is to be handled differently,
then it is important to check that the appropriate procedure is actually followed.
Additionally, it is important to continuously re-evaluate the system to check for
changed circumstances (e.g., the sensitivity of the data being outsourced has
increased, or an external accreditation has been revoked).

Termination
Contract terminations (normal or otherwise) are the times when compliance is
most at risk, since the service provider may be reluctant to take adequate security
precautions. Therefore, it is important to identify an alternative service provider
and ensure timely and secure transfer of the services. Needless to say, it is also
extremely important to ensure that sensitive data is deleted from the original ser-
vice provider’s system.

Data Handling
In addition to the general problem of ensuring that cloud service providers comply
with appropriate regulations, there are a number of concerns that specifically cen-
ter around their handling of data.

Data Privacy
Organizations have to protect the privacy of the data that they have collected, and
use the collected data only for the purpose for which it was collected. Organiza-
tional data cannot generally be sold to third parties. These restrictions have to be
followed by subcontractors, including cloud service providers.

Privacy laws often state that individuals can access their own data and modify
or delete it. It is necessary to ensure that a cloud service provider makes the same
facilities available in a timely manner.

320 CHAPTER 7 Designing Cloud Security

NOTE
Handling Issues
• Data privacy
• Data location
• Secondary use of data
• Disaster recovery
• Security breaches

Data Location
Laws on the handling of data differ from country to country. Therefore, transfer-
ring confidential data between countries may be problematic. In a cloud context,
the location of the data centers and backups needs to be known in advance, to
ensure that legal problems do not arise. This is one of the reasons that Amazon
allows specification of a region for its storage services3 that governs the location
of the data center where the data is to be stored. Note that data location considera-
tions may arise in private clouds as well.

As an example of the diversity in laws, consider the following: European
Union (EU) member countries have extremely complex data protection laws with
very stringent requirements. For example, EU countries require that in order to
transfer data outside the EU, enterprises must inform individuals that their data
will be transferred to a country outside the EU, and also obtain a clearance from
the Data Protection Authority. The difficulty in obtaining the clearance depends
upon the country; for example, under a reciprocal agreement between the EU and
the USA, a US cloud service provider only has to self-certify by registering with
the U.S. Department of Commerce. In contrast, certain countries such as China
have laws that allow local governments unlimited access to data, and encryption
of data is prohibited unless local governments can decrypt it when they require.

The large difference between laws in different countries implies that if data is
stored in multiple countries, then the enterprise has to abide by the most stringent
set of data storage laws. Consider the case of a company that maintains two repli-
cas of its internal data, one in the US and one in the EU, it is likely that the com-
pany would have to abide by EU laws, since these laws apply to the replica.

Secondary Use of Data
In addition to disallowing unauthorized access to data, enterprises need to ensure
that cloud service providers do not use the data for data mining or other second-
ary usage. To ensure this, it is necessary to carefully read the service agreements
exhibited by cloud service providers before clicking on the I Agree button. Unfor-
tunately, it is rare for users to carefully read the agreements, as shown by the case
of the online gaming store GameStation [2]. On April 1st, GameStation changed

3More details about regions are specified in Chapter 2, Infrastructure as a Service.

Legal and Regulatory Issues 321

its service agreement to state that it owned the souls of its users. It is reported that
only 12% of the users even noticed the change.

Business Continuity Planning and Disaster Recovery
Most organizations would have implemented Business Continuity Planning
(BCP) to ensure continued operation in the face of any catastrophic and unforeseen
disaster, such as a terrorist attack or earthquake. BCP typically involves identifying
the possible catastrophes, carrying out Business Impact Analysis, and using the
results of the analysis to formulate a recovery plan. Disaster Recovery (DR) is the
part of the BCP that involves the recovery of IT operations. Since IT operations
have become increasingly critical, DR is a very important part of a BCP.

When using a public cloud provider, it is important that the BCP and DR be
expanded to include catastrophes that impact the public cloud provider. In the
case of a natural disaster or other calamity, a cloud service provider’s datacenters
may become unavailable. Examples of these include:

i. an explosion that took place in 2008 in “The Plant” datacenter in Houston that
took nearly 9,000 people offline.

ii. Google’s “rolling blackout” in February 2009, caused by a software upgrade
error, which resulted in the loss of mail service to many customers.

In this eventuality, it is necessary that there be a well-thought out disaster
recovery plan. The disaster recovery plan should be formulated before deploying
applications to the cloud, and implemented during deployment (e.g., by perform-
ing regular backups of data). Additionally, the cloud service provider’s DR plans
should be studied. It is important to use features that the cloud service provider
may provide for DR, such as the use of multiple data locations.

Security Breaches
In the eventuality of a security breach, it is necessary to be informed of the breach as
quickly as possible so that corrective action can be taken. For example, in the United
States, there are laws that require individuals to be notified if their data is stolen. It is
therefore necessary to understand the cloud service provider’s disclosure policy, and
understand how quickly they would notify their customers. To avoid ambiguity, the
service agreement should specify the actions to be taken during a breach.

In some cases, a business may discover the security breach before their cloud
service provider. In this case, the business should notify the cloud service provi-
der, since the breach may have affected other customers of the cloud service pro-
vider as well. Here also, the contract should specify the obligations of the
business that discovers the security breach, in order to avoid possible ambiguity
about the responsibilities of the business and the cloud service provider.

Litigation Related Issues
Another set of issues arise from the obligations of the cloud service provider dur-
ing litigation. The litigation may involve either the business that is using the

322 CHAPTER 7 Designing Cloud Security

cloud or the cloud service provider itself. If the business is involved in litigation,
and is asked to make available certain data as part of the court proceedings, it is
important to know if the cloud service provider can satisfactorily respond to the
request. This is important since the courts will hold the business, and not the
cloud service provider, responsible for responding to the request.

It is also possible that the cloud service provider may be asked directly to pro-
vide some data as part of litigation involving the business. In this case, it is
important that the cloud service provider notify the business in a timely manner,
to allow the business to contest the request if needed.

SELECTING A CLOUD SERVICE PROVIDER
Security is one of the major concerns for people who are going to select a public
cloud service provider. The following are criteria for evaluating the security of a
cloud service provider. There are two steps to this process – the first step is to
enumerate the risks present. The next step is to evaluate how well the cloud ser-
vice handles the risk. These steps are as below.

Before describing the steps, it is to be noted that in practice, the evaluation is
not as straightforward as it may seem. The economics of cloud computing do not
allow cloud service providers to engage in detailed negotiation with customers.
Frequently, it may be necessary to rely on published material to evaluate the level
of security provided. Information about security may be available in the standard
contract, which could be evaluated by a security expert to provide information on
the strength of the security infrastructure. However, it is possible that the pub-
lished material is inaccurate or out of date. One method out of this impasse is for
the cloud service provider to be certified by a third party in accordance with some
security standard. However, this has not yet become a common practice.

Heroku (http://heroku.com) is an exception to the generalization that it is diffi-
cult, if not impossible to assess the security infrastructure of a cloud service provi-
der. The architecture of Heroku (including the security architecture) is described
very clearly making heavy use of graphics.

Listing the Risks
A checklist of potential risks (derived from work by ENISA) is presented in
Chapter 8 of the book titled Securing the Cloud [2]. This table can be used as a
starting point for deriving the potential risks in the cloud system. An excerpt from
the table is given in Table 7.1.

The first three columns in Table 7.1 list the risk, and its probability of occur-
rence and impact, respectively. The column labeled Affected Assets lists the
assets that could be compromised if the risk in column 1 occurs. The last column
lists the factors that could cause the risk. The first risk listed, Subpoena and
e-discovery, is a legal risk. The second risk, Multi-tenancy, is partly a technical

Selecting a Cloud Service Provider 323

http://heroku.com

risk, since one of the factors listed – isolation failure – could be technical. The
final risk listed, CSP outsourcing, is a business risk.

Security Criteria for Selecting a Cloud Service Provider
The criteria for selecting a cloud service provider can be based on multiple
aspects, namely security processes, system management, and technology.

Security Processes
The cloud service provider should have a comprehensive set of security policies
that cover all aspects of security. It is also desirable that the security staff not
report to the same person as the operational staff to ensure independence of opera-
tion. However, there should be close co-operation between the two groups, similar
to the functioning of testing groups and development groups in software organiza-
tions. There should be a practice of conducting periodic vulnerability scans to
identify weak spots in the cloud infrastructure. There should be a comprehensive
set of logs which are retained long enough to meet regulatory requirements. In

Table 7.1 List of Risks for Cloud Systems

Risk Probability Impact Affected
Assets

Factors

Subpoena
and e-
discovery

High Medium Reputation and
customer trust;
personal and
sensitive data;
service delivery.

Lack of resource
isolation; data stored
in multiple
jurisdictions; lack of
transparency.

Multi-
Tenancy

Low High Reputation; data
exposure;
service delivery;
IP address
blacklisting.

Isolation failure
(technology or
procedural); indirect:
other tenant fails in
their security
responsibility in which
unfairly taints
reputation of CSP
and by transference
other tenants; multi-
tenancy complicates
intervention and
remediation.

CSP
outsourcing

Low Medium Reputation and
customer trust;
personal and
sensitive data;
service delivery.

Hidden
dependencies on 3rd
party services; lack
of transparency.

324 CHAPTER 7 Designing Cloud Security

case of a security incident, there should be quick response and transparent report-
ing to the customers. There should be a Security Operations Center that continu-
ally monitors security parameters and that can serve as a central control point
during security incidents.

System Management
System management is important since if secure system management processes are
not in place, it is easy for an attacker to use the management infrastructure in
order to gain control of key systems. The following are some key components of
secure system management processes. First, there should be a formal change man-
agement procedure with documentation and approval for changes to the infrastruc-
ture. There should be an upgrade and patch management process that ensures that
security patches are applied in a timely manner to reduce the window of opportu-
nity for any known vulnerabilities in the system to be exploited. Data should be
periodically backed up to ensure business continuity. The provider should have
strong Service Level Agreements (SLAs) in place and have processes to back
these up.

Technology
The cloud service provider should have invested in system components that pro-
vide state of the art security. These include hardened routers (since routers are
exposed to the external Internet), firewalls, security monitoring systems, including
host and network intrusion detection systems. Implementation of multi-tenancy is
an extremely important topic. A good example is the description by Ristenpart
et al. [12] on how a group of security researchers were able to circumvent the
restrictions imposed by virtualization in Amazon EC2, allowing the researchers’
virtual machine to gather information about other virtual machines on the same
physical server.

CLOUD SECURITY EVALUATION FRAMEWORKS
The previous section considered criteria for selecting a cloud service provider.
However, various industry organizations have developed standard frameworks for
evaluating the security of a cloud. This section describes some of these already
existing frameworks that can be used for evaluating cloud security. More details
can be found in Securing the Cloud [2].

Cloud Security Alliance
The Cloud Security Alliance (CSA) has a number of frameworks that are useful
for evaluating various aspects of cloud security. A few are described next.

1. The Cloud Controls Matrix (CCM) assists cloud customers in assessing the
overall risk of a cloud provider [13].

Cloud Security Evaluation Frameworks 325

2. The Consensus Assessments Initiative Questionnaire documents security
controls that exist in cloud (IaaS, SaaS, PaaS) systems, with the objective of
providing security control transparency.

3. The Security Guidance for Critical Areas of Focus in Cloud Computing
whitepaper provides security guidance for a number of key areas in cloud
computing, including architecture and governance.

4. Domain 12: Guidance for Identity and Access Management published in
April 2010 is an analysis of identity management for the cloud.

5. The objectives of CloudAudit are to provide the means to measure and
compare the security of cloud services. The method used to accomplish this is
to define a standard set of APIs for measuring the performance and security
that are to be implemented by all cloud service providers.

European Network and Information Security Agency (ENISA)
The European Network and Information Security Agency (ENISA) has a number
of efforts for cloud security, notably Cloud Computing Information Assurance
Framework [6] and Cloud Computing Benefits, Risks and Recommendations for
Information Security [3]. These have been discussed in detail earlier in this chap-
ter in the Security Architecture Standards section.

Trusted Computing Group
The Trusted Multi-Tenant Infrastructure Workgroup of the TCG is intending
to develop a security framework for cloud computing. The focus of this work-
group is end-to-end cloud security. The approach taken by this group is to lever-
age existing standards and integrate them to define an end-to-end security
framework. This framework can then be used as a basis for compliance and
auditing.

SUMMARY

This chapter has focused on processes and practices to be followed in order to
ensure a robust security architecture. First, the requirements for the cloud security
infrastructure were considered. This can be divided into two parts – ensuring the
security of the physical infrastructure, and best practices for security processes
and technology. Subsequently, the concept of risk management was described.
Risk management is the process of evaluating the possible security threats to the
system, identifying the major risks, and putting in place security controls to han-
dle them. The FIPS 200 standard for identifying the impact of a risk and the
NIST 80053 standard for security controls were described. Subsequently, security
design patterns and principles (e.g., that more security-critical parts of the cloud
infrastructure should have greater security protection) that should be followed to
design the security infrastructure for a cloud were described. A high-level security

326 CHAPTER 7 Designing Cloud Security

design for a PaaS system based upon these design patterns was discussed next.
The PaaS security design illustrates how the design patterns discussed earlier can
be put into practice. Finally, various security architectures which can be leveraged
to implement cloud security were discussed (e.g., ITIL-SM, which is the Security
Management section of the well known ITIL IT service management standard.

The second part of the chapter focused on security concerns arising out of the
use of public clouds. First, legal and regulatory issues were considered. The first
set of issues arises from the fact that, legally, a cloud service provider is a subcon-
tractor, and it is the responsibility of the business to ensure that they are in com-
pliance with all legal and regulatory issues. Then, issues arising out of the fact
that a cloud service provider is a “third party” in any litigation were discussed. In
a cloud (public or private), there can also be legal issues arising from the geo-
graphic location in which data is stored, since the data is then subject to the juris-
diction of that country. A checklist for evaluating the security of a cloud service
provider was described. Finally, a high-level review of methods for evaluating the
level of security of a cloud service that are being evolved by various standards
bodies was described.

References
[1] Raphael J. R. Twitter Hack: How It Happened and What’s Being, PC World, http://

www.pcworld.com/article/156359/twitter_hack_how_it_happened_and_whats_being_
done.html; 2009 [accessed 13.10.11].

[2] Winkler JR. Securing the Cloud, Syngress, 29 April 2011, ISBN 978-1597495929.
[3] NIST Special Publication 800-53 Revision 3. Recommended Security Controls for

Federal Information Systems and Organizations, http://csrc.nist.gov/publications/nist-
pubs/800-53-Rev3/sp800-53-rev3-final.pdf; 2009 [accessed 08.10.11].

[4] Minimum Security Requirements for Federal Information and Information Systems.
http://csrc.nist.gov/publications/PubsFIPS.html [accessed 13.10.11]

[5] System Security Engineering Capability Maturity Model. http://www.sse-cmm.org/
index.html [accessed 13.10.11].

[6] Cloud Computing Information Assurance Framework. http://www.enisa.europa.eu/act/
rm/files/deliverables/cloud-computing-information-assurance-framework [accessed
13.10.11]

[7] Cloud Computing Benefits, Risks and Recommendations for Information Security.
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
at_download/fullReport [accessed 13.10.11].

[8] ISACA. http://www.isaca.org/About-ISACA/History/Pages/default.aspx [accessed
13.10.11].

[9] COBIT Framework for IT Governance and Control. http://www.isaca.org/Knowledge-
Center/COBIT/Pages/Overview.aspx?utm_source=homepage [accessed 13.10.11].

[10] Computer Security Division Security Resource Center. http://csrc.nist.gov/groups/
SMA/index.html [accessed 13.10.11].

[11] American Institute of Certified Public Accountants. http://www.aicpa.org [accessed
13.10.11].

References 327

http://www.pcworld.com/article/156359/twitter_hack_how_it_happened_and_whats_being_done.html
http://www.pcworld.com/article/156359/twitter_hack_how_it_happened_and_whats_being_done.html
http://www.pcworld.com/article/156359/twitter_hack_how_it_happened_and_whats_being_done.html
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://csrc.nist.gov/publications/PubsFIPS.html
http://www.sse-cmm.org/index.html
http://www.sse-cmm.org/index.html
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-information-assurance-framework
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-information-assurance-framework
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.isaca.org/About-ISACA/History/Pages/default.aspx
http://www.isaca.org/Knowledge-Center/COBIT/Pages/Overview.aspx?utm_source=homepage
http://www.isaca.org/Knowledge-Center/COBIT/Pages/Overview.aspx?utm_source=homepage
http://csrc.nist.gov/groups/SMA/index.html
http://csrc.nist.gov/groups/SMA/index.html
http://www.aicpa.org

[12] Ristenpart T, et al. Hey, You, Get Off My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds. In: Proceedings of the 16th ACM Conference on Computer
and Communications Security, New York, NY; 2009. Also http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.150.681&rep=rep1&type=pdf; [accessed 08.10.11].

[13] Controls Matrix (CM). Cloud security alliance V1.2. https://cloudsecurityalliance.
org/research/initiatives/cloud-controls-matrix/; 20010 [accessed 08.10.11].

328 CHAPTER 7 Designing Cloud Security

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.681&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.681&rep=rep1&type=pdf
https://cloudsecurityalliance.org/research/initiatives/cloud-controls-matrix/
https://cloudsecurityalliance.org/research/initiatives/cloud-controls-matrix/

CHAPTER

8Managing the Cloud

INFORMATION IN THIS CHAPTER:

• Managing IaaS

• Managing PaaS

• Managing SaaS

• Other Cloud-Scale Management Systems

INTRODUCTION

Ease of managing a cloud infrastructure forms a critical part of any cloud solution,
since simplicity of usage and freedom from IT management are two important
values provided by cloud models. As introduced in previous chapters, the cloud
architecture consists of technologies at IaaS, PaaS, and SaaS layers. Therefore, a
key requirement for the cloud architecture is efficient management of resources at
all three layers of the stack. Specifically, the questions to be addressed include
how to monitor performance and health of resources, how to perform fault diag-
nostics and recovery, and how to enforce SLAs during operation of the resources.
While these are issues faced in any IT management system, these problems
become harder for cloud management. The larger scale of the systems being man-
aged, support for multi-tenancy, need for better precision of monitoring to support
the pay-per-use model, and elasticity in the resources make the problem much
harder. Automation is needed to replace manual operations and reduce overall
costs. The overall objective is to maintain SLAs specified by the user, which have
to be translated and ensured across the IaaS, PaaS, and SaaS layers.

This chapter first looks at the approaches used for IaaS monitoring and manage-
ment using two IaaS solution case studies described in Chapter 2, Infrastructure as
a Service. These are CloudSystem Matrix and Amazon EC2 (using Amazon
CloudWatch). To study the approaches used for managing PaaS systems, the exam-
ple of Microsoft Azure is revisited and the management tools used for the same are
detailed. Finally, tools to manage SaaS systems are studied using NetCharts and
Nimsoft as case studies.

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00008-1
© 2012 Elsevier, Inc. All rights reserved.

329

http://dx.doi.org/10.1016/B978-1-59749-725-1.00008-1

MANAGING IAAS1

A fully automated solution for provisioning multiple resources requires creation of
automated workflows, coordination across multiple resource types, and automated
configuration of systems, middleware, and applications. Runtime maintenance
requires monitoring of highly dynamic distributed infrastructure, monitoring
dynamic partitioning, allocation, and de-allocation of infrastructure. Distributed
Management Task Force (DMTF) is an industry consortium that develops, main-
tains and promotes standards for systems management in enterprise IT environ-
ment. DMTF proposed architecture and other standardization efforts are described
in Chapter 10. In this section, two IaaS Systems introduced in Chapter 2, namely
CloudSystem Matrix and Amazon EC2, are used as examples to explain the man-
agement of IaaS with a specific focus on their runtime management aspects.

Management of CloudSystem Matrix
HP CloudSystem Matrix provides a self-service interface that consumers and
administrators can use to perform on-going operations over the lifetime of the
service [1]. These could be simple activities such as re-boot or just getting console
access to the environment, or more advanced activities such as adjusting the resources
assigned to the service – expanding to meeting demand growth, as well as reducing
resources during low utilization periods. These and other such operations are
available from the CloudSystem Matrix administrator portal as well as via Web
Service APIs.

Figure 8.1 shows the functional block diagram of the Matrix environment with
components that enable runtime management capabilities. The administrator portal
enables site maintenance as well as operations management capabilities. It also
includes the assignment of resources to resource pools and enablement of groups
of users to draw from these pools. As described in Chapter 2, the resource pools
contain resources associated with virtual machines, physical servers, networks and
IP addresses, storage capacity and deployable software. Each of these resources
has an internal manager that interacts with the corresponding data center
resources. When a request is initiated via the portal or API to create a new service
instance or allocate additional resources to an existing service, the allocation and
scheduling engine evaluates the available resources in the resource pool, picks an
appropriate resource, and then allocates it to run the workload. Administrator tools
also support capacity planning associated both with demand growth as well as the
impacts of maintenance schedules. A combination of these built-in and optional
add-on tools/components enables the ongoing administration of the Matrix envir-
onment. The following are some tools that are tailored towards particular adminis-
trative roles.

1Contributed by Dr. Vanish Talwar and Mr. Nigel Cook, Hewlett-Packard Labs.

330 CHAPTER 8 Managing the Cloud

IaaS Administrator of CloudSystem Matrix
This role is concerned with managing the on-going administration of the IaaS infra-
structure. Particular concerns are around the monitoring of on-going self-service
requests, the available capacity of IaaS resource pools, replacement of failed infra-
structure components, and routine patching and upgrade of server, network and
switch firmware components. CloudSystem Matrix provides an integrated console to
perform these operations. Some of the available administrative capabilities include:

a. Realtime dashboard summarizing the overall state of CloudSystem Matrix
b. Assignment or migration of server resources to self-service user resource pools
c. Historical capacity trending of CPU, memory, I/O and power on nominated

groups of resources
d. Ability to simulate the effects of workload growth or resource addition/

removal on the capacity trends in (c)
e. Realtime status monitoring and reporting for all matrix infrastructure

components
f. Workload migration tools allowing physical or virtual workloads to be

manually migrated by the administrator
g. Integrated firmware patching tools

Enterprise
portals

Chargeback &
billing

Service
management

Application
integration

CMDB

Ticketing
systems

Operations
management

Network
integration

Software
deployment

manager

Storage
resource
manager

Network
resource
manager

Physical
server

manager

Virtual
machine
manager

Service catalog

Allocation & scheduling

Service lifecycle management

Maintenance & operations management

Resource pool management

Service template
designer

Workflow
designer

Consumer portal

Admin portal

ConConsumsumer portal

Admin portal

Storage
integration

FIGURE 8.1

A high-level block diagram of CloudSystem Matrix.

Managing IaaS 331

Self-Service Monitoring
The consumers of HP IaaS offerings can use a variety of built-in tools, as well as
add-on tools provided by HP, open source or other third-party sources to monitor
their deployed services. Notable among these is HP SiteScope [2], which provides a
variety of metrics at application level and transaction level as well as resource level.
These consumers of the infrastructure are primarily concerned with the state of their
infrastructure components, as well as the service levels delivered from their
infrastructure services. Some of the available administrative capabilities include:

a. Real-time dashboard showing their service components and the corresponding
resource allocation to the service

b. Service component utilization statistics and calendar views
c. Service-level monitoring tools such as HP Software’s SiteScope and Business

availability center.

This combination of tools allows synthetic user transactions, such as a shop-
ping cart request or web page access, to be applied to a particular service, and the
response time measured and monitored over time. This gives a view of not just
whether the components of a service are running, but an indication of the level of
service that an end consumer would experience. As an example, if the measured
service level was too high, it might be an indication that resources could be
removed from the service, reducing costs. Similarly, should the measured resource
time be too slow, this could again be an indication that additional resources need
to be applied to the service to increase performance.

As mentioned earlier, runtime maintenance can be performed using the admin-
istrator portal or through Matrix APIs. The APIs are exposed as Web Service
interfaces and client access is available in a large variety of languages (C++/Java/
Python/Ruby/Actionscript to name just a few) based on built-in or widely used
open source libraries. The Matrix environment can be queried to provide a defini-
tion of these exposed services. For example, for a Matrix system installed with IP
address 192.168.0.25, to access the WSDL (Web Service Description Language),
type into the web browser:

https://192.168.0.25:51443/hpio/controller/soap/v1?wsdl

Matrix also distributes a command line interface that invokes the same web
service interfaces and allows a similar implementation in the user’s favorite shell.

A Programming Example to Control Elasticity
This section illustrates how these APIs can be used to adjust the resources
associated with the Pustak Portal service introduced in Chapter 1. Referring back to
the Pustak Portal Matrix templates from Chapter 2, the number of servers in the
web tier were initially specified to be 6 servers. From the self-service portal the
consumer has the ability to request additional servers to be added, up to the maxi-
mum of 12 servers. The consumer also has the ability to quiesce and reactivate

332 CHAPTER 8 Managing the Cloud

https://192.168.0.25:51443/hpio/controller/soap/v1?wsdl

servers in a tier. For example, in a tier that has 6 provisioned servers, the consumer
can request 3 servers be quiesced, which will cause those servers to be shut down
and the associated server resource released. However, a quiesced server disk
image and IP address allocation is retained, so that the subsequent re-activate
operations can occur quickly, without requiring a server software re-provisioning
operation.

In order to maintain service levels and contain costs, the owner can dynami-
cally scale the resources in the environment to make sure that the service has just
enough server and storage resources to meet the current demand, without the need
to be pre-allocated and have a lot of idle resources. The service scaling can be
performed depending on the number of concurrent users accessing the system,
shown in Table 8.1. The owner may also want to ensure that there is just enough
storage capacity for the service, such as wanting to maintain a minimum 25 GB
of storage capacity headroom. To facilitate this, it is assumed that a simple CGI
or REST based web service interface exists that returns the number of concurrent
users on the site, as well as unused capacity in the database.

In the following example Java code, the open source cxf library will be used to
scale the service resources based on the number of concurrent users using the web
services API.

package com.hp.matrix.client;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;

import org.apache.cxf.endpoint.Client;
import org.apache.cxf.endpoint.Endpoint;
import org.apache.cxf.frontend.ClientProxy;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor;
import org.apache.ws.security.WSConstants;
import org.apache.ws.security.WSPasswordCallback;

Table 8.1 Sample System Scaling for the Pustak Portal

Load
Concurrent
Users Web Tier App Tier

Database
Tier

Small 1,000 2 2 2
Medium 5,000 6 4 2
Large 10,000 8 5 2
X Large 50,000 12 6 3

Managing IaaS 333

import org.apache.ws.security.handler.WSHandlerConstants;

import com.hp.io.soap.v1.IO;
import com.hp.io.soap.v1.RequestInfo;
import com.hp.io.soap.v1.RequestStatusEnum;

public class Adjust {
final static long GB = 1000*1000000L;
protected IO endpoint;
protected String serviceName;

public Adjust(String url, String username, String password,
String serviceName) {

endpoint = newWebServiceEndpoint(url, username, password);
}

public Boolean adjustServers(long concurrentUsers) throws
Exception {

Boolean adjustmentMade = false;
int webSize, appSize, dbSize;

if (concurrentUsers <= 1000) {
webSize = 2; appSize = 2; dbSize = 2;

} else if (concurrentUsers <= 5000) {
webSize = 6; appSize = 4; dbSize = 2;

} else if (concurrentUsers <= 10000) {
webSize = 8; appSize = 5; dbSize = 2;

} else {
webSize = 12; appSize = 6; dbSize = 3;

}

String requestId;
requestId = endpoint.setLogicalServerGroupActiveServerCount
(serviceName, "DB Cluster", dbSize, true, null);

if(requestId != null) {

Wait.For(endpoint, requestId);

adjustmentMade = true;
}
requestId = endpoint.setLogicalServerGroupActiveServerCount
(serviceName, "App Server", appSize, true, null);
if(requestId != null) {

Wait.For(endpoint, requestId);
adjustmentMade = true;

}
requestId = endpoint.setLogicalServerGroupActiveServerCount
(serviceName, "Web", webSize, true, null);
if(requestId != null) {

334 CHAPTER 8 Managing the Cloud

Wait.For(endpoint, requestId);
adjustmentMade = true;

}
return adjustmentMade;

}
public Boolean adjustStorage(long free) throws Exception {

if(free < 25*GB) {

String requestId = endpoint.addDiskToLogicalServer
Group(serviceName, "DB Cluster", "db");
Wait.For(endpoint, requestId);

return true;
}
return false;

}

private static class Wait {
static Boolean For(IO service, String requestId) {

try {
while(true) {

RequestInfo info = service.getRequestInfo
(requestId);

RequestStatusEnum status =
info.getStatus().getEnumValue();
if(status == RequestStatusEnum.COMPLETE ||

status == RequestStatusEnum.FAILED) {
if(status == RequestStatusEnum.COMPLETE)

return true;
else

return false;
}
Thread.sleep(15*1000);

}
} catch (Exception e) {

return false;
}

}
}

public static void main(String[] args) {
Adjust a = new Adjust(" https://1.1.1.1:51443/hpio/
controller/soap/v1",

"automation", "password", "myService");
while (true) {

long concurrentUsers = getConcurrentUsers();
long diskFree = getFreeSpace();
a.adjustServers(concurrentUsers);

Managing IaaS 335

a.adjustStorage(diskFree);
Thread.sleep(5*60*1000);

}
}

The sample code main method illustrates the conceptual steps for maintaining
the appropriate level of resources in the Pustak Portal environment. The main
routine commences by creating a new instance of an Adjust object that will
enable the on-going adjustment of the resources associated with a service called
myService that is being managed by a CSA Matrix with an IP address 1.1.1.1
(fictitious IP address). The Matrix service will now be accessible by an account
with username automation and a password of password.

The sample control loop uses web services calls getConcurrentUsers and
getFreeSpace to query information from the service. These calls are assumed to be
specific to the Pustak Portal implemented through a CGI process or some other method.
The adjustServers and adjustStorage methods are then invoked to make adjust-
ments as necessary to the resources on myService and it then sleeps for 5 minutes.

The majority of the processing is contained within the Action class. The
instantiation method invokes a method newWebServiceEndpoint to create a web
services endpoint to Matrix with the appropriate credentials.

The adjustServers method has one argument specifying the current number
of concurrent users. The code commences by mapping from this number of users
to the appropriate size of web, application and database servers as specified in
Table 8.1. The code then uses successive calls to the setLogicalServerGroupAc-
tiveServerCount web service call to request adjustment of the number of servers
in the database, application and web service tiers. This web service call will initi-
ate an adjustment of the number of servers in a particular tier, or return null if the
tier size currently matches the specified count. Where an adjustment is required,
the web service call returns a request identifier which can be used to track the
progress of the request. In the sample code the method Wait.For is invoked pas-
sing the requestId. The For method polls to check the status of the request using
the web service call getRequestInfo, and finally returns when the request either
successfully completes, or ends in failure.

The adjustStorage method has one argument specifying the current free
storage in the environment. When the amount of free storage is less than 25GB, the
web service call addDiskToLogicalServerGroup is used to create and attach addi-
tional shared storage to the servers in the database tier DB Cluster. The existing
disk DB is used as a stereotype for the new storage. The web server call returns a
request Id, and the Wait.For method is used to monitor the progress until the
operation completes.

EC2 Management: Amazon CloudWatch
In Chapter 2, there was a detailed description of the features of Amazon EC2 and
related products. This section briefly describes the monitoring support provided by

336 CHAPTER 8 Managing the Cloud

Amazon CloudWatch [3]. CloudWatch provides monitoring for Amazon EC2
instances, Amazon EBS Volumes, Elastic Load Balancers, and RDS database
instances. It provides access to a wide range of metrics such as CPU utilization,
disk reads and writes, network traffic, latency, and client-request count. It also
provides statistics such as minimum, maximum, sum, and average of various
parameters. Use of Amazon CloudWatch provides customers with a visibility into
resource utilization, operational performance, and overall demand patterns for
their instances.

It can be invoked both as a web service and through the command line. The
monitoring information obtained from Amazon CloudWatch can enable various
management functions. For example, it enables Auto Scaling, which allows the
dynamic addition or removal of Amazon EC2 instances based on Amazon Cloud-
Watch metrics. The monitoring data collected by Amazon CloudWatch can be
accessed using the AWS Management Console, web service APIs or Command
Line Tools.

End-users can use Amazon CloudWatch to monitor their instances on Amazon
EC2 by either using AWS Management Console or by using command line tools.
For example, the following command line can be used to enable monitoring when
launching an instance. The gsg-keypair is the secret key described in the section
titled Getting Started in Chapter 2.

geetham$> ec2-run-instances ami-2bb65342 -k gsg-keypair – monitored

Once CloudWatch has been enabled to monitor the instance, the data can be
obtained by either using the Amazon CloudWatch API or the AWS Management
Console. Figure 8.2 [4] and Figure 8.3 [5] show some screenshots of the AWS
CloudWatch for a sample of gathered data.

When using programmatically, the GetMetricStatistics API can be used to
return data for one or more statistics of a given metric. The API ListMetrics lists
the set of metrics for which recorded data is available. As of writing of this book,
the following metrics were available for EC2 instances.

CPUUtilization The percentage of the allocated compute units currently used by the
instance

DiskReadOps Completed read operations from all disks available to the instances.
DiskWriteOps Completed write operations to all hard disks available to the instance.
DiskReadBytes Bytes read from all disks available to the instance.
DiskWriteBytes Bytes written to all disks available to the instance.
NetworkIn The number of incoming bytes received on all network interfaces by

the instance.
NetworkOut The number of outgoing bytes sent on all network interfaces by the

instance.

Additionally, useful statistical information based on these metrics are also sup-
ported by Amazon CloudWatch, such as minimum, maximum, sum, average,

Managing IaaS 337

FIGURE 8.3

A more detailed view of Amazon Cloudwatch.

FIGURE 8.2

Screenshot of Amazon Cloudwatch.

338 CHAPTER 8 Managing the Cloud

samples and so on. More information on other metrics available for Amazon EBS
(Elastic Load Balancing) and Amazon RDS are available in the metrics page of
the developer manual [6]. Amazon CloudWatch is basically a metrics repository;
an Amazon tool (EC2, EBS or RDS) just puts its metrics into it and can retrieve
statistics based on those metrics, set alarm points for notifications or provide
appropriate auto scaling functionality.

In summary, techniques for IaaS cloud management not only relate to fine-
grain monitoring of various compute or storage metrics (detailed using Cloud-
Watch as an example) but also includes methods of maintaining SLAs, especially
to ensure elasticity of resources (detailed using Matrix API as an example). The
next section now gives some details of managing a PaaS system.

MANAGING PAAS2

Similarly to an IaaS system, a PaaS system needs to maintain SLAs and to pro-
vide appropriate runtime administration features. In this section, Windows Azure
[7] will be used as an example to explain the management of a typical PaaS
system.

Management of Windows Azure
In Chapter 3, Windows Azure, the .Net-based popular Cloud platform was
described. In this section, the management aspects of Azure will be studied. First,
the section provides an overview of the Windows Azure SLAs followed by a dis-
cussion of the management capabilities with Windows Azure.

Service Level Agreements (SLAs)
Windows Azure has separate SLAs for the storage, compute, CDN and App
Fabric components. The reader is referred to Chapter 3 of this book for more
details of these components. For compute, Microsoft guarantees that when custo-
mers deploy two or more role instances in different fault and upgrade domains,
the web roles will have external connectivity at least 99.95% of the time. Addi-
tionally, Microsoft guarantees that 99.9% of the time corrective action will be
initiated when the fabric controller detects that a role instance is down. Similarly
on the storage front, Microsoft guarantees that at least 99.9% of the time correctly
formatted requests to Windows storage for adding, updating, reading and deleting
data will be processed correctly. Requests that are throttled because the applica-
tion does not obey back-off principles and requests that fail because of application
logic (like creating a container that already exists) are not considered to be failures
of the service.

2Contributed by Mr. Gopal R. Srinivasa, Microsoft Research, India.

Managing PaaS 339

For SQL Azure, Microsoft guarantees a Monthly Availability of 99.9%
during a calendar month. Monthly Availability Percentage for a specific custo-
mer database is the ratio of the time the database was available to customers to
the total time in a month. Time is measured in 5-minute intervals in a 30-day
monthly cycle. Availability is always calculated for a full month. An interval is
marked as unavailable if the customer’s attempts to connect to a database are
rejected by the SQL Azure gateway.

Uptime percentage commitments and SLA credits for Service Bus and Access
Control are similar to those specified previously in the Windows Azure SLA. Due
to inherent differences between the technologies, underlying SLA definitions and
terms differ for the Service Bus and Access Control services. Details are available
in the App Fabric SLA [8]. The latest versions of the list of committed Windows
Azure SLAs are maintained at [9].

Managing Applications in Azure
Availability: Two key aspects of ensuring availability of applications are the con-
cepts of upgrade domains and fault domains. As mentioned in earlier chapters,
running multiple role instances in multiple fault domains ensures that a single
hardware fault will not bring down all the instances. Upgrade domains are units
of upgrade – they ensure that at least one instance of a role is running when other
instances are being upgraded, either by the fabric controller or by the customer.
Allocation of roles to different upgrade or fault domains is completely controlled
by the Fabric controller. However, customers are allowed to configure the number
of upgrade domains for their applications through the Service configuration
(*.cscfg) file.

For high availability, it is necessary that many instances of a role be created.
System administrators must judiciously select the number of instances of the roles
they need and the number of upgrade domains based on the service load, the
number of versions of the application supported in parallel, and the cost of run-
ning multiple instances of their roles.

Monitoring: The primary mechanism to monitor the uptime of a cloud appli-
cation is through the Diagnostics API, described in the Windows Azure section of
Chapter 3. Both Web and Worker roles can raise Windows events when errors are
encountered. In addition, the IIS diagnostics module logs failed HTTP requests.
Roles can also log performance data based on which administrators can choose to
increase or decrease the size of the VMs allocated to each roles. Each role has an
instance of the Diagnostics Manager class running as a separate process on the
same VM. The Diagnostics manager processes events, performance data and trace
messages raised by the role and stores the data generated on the local system.

Administrators can either choose to configure the manager to upload the logs
to Azure storage periodically or to do it on-demand. Administrators can use the
DeploymentDiagnosticsManager class to create their own application that moni-
tors service logs, or alternatively, use third-party applications like Cerebrata’s
Azure Diagnostics Manager to monitor the roles of their Azure applications.

340 CHAPTER 8 Managing the Cloud

Microsoft’s System Center and Microsoft Management Console (MMC) can also
be used to monitor Azure applications. However, uploading logs to the Azure
store is time consuming, and there is additional time needed for downloading the
logs onto the administrator’s machine. So, using this mechanism is not a practical
option for real-time monitoring of Azure applications.

TIP
A Useful Class for Monitoring
TraceSource: A class in the .NET diagnostics API that allows applications to trace the
execution of code. Among other features, the class allows applications to log messages
agnostic of the target to which the messages are directed.

For real-time monitoring and notification, roles must write events to a message
queue which is monitored by a diagnostic application (or a notifying application).
Alternatively, the developer can direct the App Fabric to log messages to an on-pre-
mise logging service which can raise notifications as appropriate. The App Fabric
SDK contains an example of using the .NET TraceSource API with the App
Fabric to create a real-time notification system for Windows Azure. A brief descrip-
tion follows. Essentially, the method is to create a TraceListener object that writes
to an on-premise message-logging web service that processes the messages. Com-
munication between the TraceListener and the on-premise message-logging
service is through the ServiceBus (described in Chapter 2).

While using the mechanism, care should be taken to only log actionable error
messages to the service, to both limit network load and limit the cost of the ser-
vice. In addition, even though access to the on-premise logging service is through
a secure channel, care should be taken not to expose PII and confidential data.
Best practices for monitoring Azure-hosted applications can be found in Monitor-
ing and Diagnostic Guidance for Windows Azure Hosted Applications [10].

Common Administrative Functions: The Azure portal provides single point
access to all management and administrative functions. In addition, the Azure
Management API provides REST-based APIs for common service administration
functions. In order to automate builds and deployment, this API can be used – note
though that the API is only available over a secure HTTP connection. Therefore,
the account owner should upload appropriate certificates and share public keys with
the service administrators to enable automated management.

The management API provides functions to publish new versions of the appli-
cation, increase/decrease the number of roles, change storage keys, and so on. In
addition, to change role-related settings, like tracing options or other configuration
settings for a role, clients can use the DeploymentDiagnosticsManager class to
publish new configurations to a role or a set of roles. In fact, tools such as Micro-
soft Management Console (MMC) can also be used.

The Windows Azure platform management plug-in for MMC is available at
Windows Azure MMC [11]. The plug-in offers many features including the ability

Managing PaaS 341

to upload diagnostics logs from the VMs, download and view the logs, and perform
service administration functions. Using the App fabric for real-time application
monitoring is described in the free e-book, Azure from the Trenches [12].

As seen in this section, in addition to routine resource monitoring and manage-
ment functionality, PaaS solutions need to provide platform-specific monitoring
capabilities.

MANAGING SAAS
The monitoring of Salesforce.com (described in Chapter 4) is used as an example
of how SaaS environments are managed. Two example solutions follow – those
provided by Netcharts and Nimsoft, respectively. These solutions help to identify
when Salesforce encounters slowdowns or outages and allows businesses to react
on time.

Monitoring Force.com: Netcharts
NetCharts [13] is an application that provides useful performance information in a
well-integrated manner for Salesforce.com. It provides an up-to-date dashboard
view of the key performance indicators (KPIs). Dashboards can be shared
across Salesforce users within an organization. The dashboard provides powerful
analytics, helping users make optimal decisions and increase operational effi-
ciency. Key relationships and anomalies can be identified, and business trends can
be predicted as well. Figure 8.4 [13] shows the Netcharts dashboard.

Monitoring Force.com: Nimsoft
Nimsoft [14] provides monitoring solutions that apply to the IaaS, PaaS, and
SaaS stack. In particular, the solution for the SaaS stack can be used to monitor
Salesforce.com applications providing detailed quality of service metrics and
alarms, thus delivering insights to minimize the business impact of Salesforce
downtime or performance problems. Metrics monitored include average transac-
tion time, number of transactions, and instance status, as well as an organization’s
Salesforce implementation, including file and data storage, login timing, API
calls, query execute time, and more. Figure 8.5 shows the Nimsoft monitoring
dashboard for Salesforce.com [15].

The Nimsoft product architecture is built around a scalable, highly reliable
message bus, with a lightweight “publish and subscribe” communications model.
It also has hundreds of modular probes for both agent-less and agent-based moni-
toring. One unique capability is zero-touch setup – the capability to automatically
configure and distribute probes to new physical or virtual systems. This capability
can be integrated with a CMDB as well as with a change management or provi-
sioning system.

342 CHAPTER 8 Managing the Cloud

http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Salesforce.com

FIGURE 8.4

Netcharts application monitoring Salesforce.com.

M
anaging

SaaS
3
4
3

http://Salesforce.com

OTHER CLOUD-SCALE MANAGEMENT SYSTEMS
The separation of functionality across IaaS, PaaS, and SaaS layers provides a
good abstraction for cloud systems. However, having separate management sys-
tems for each of these layers results in inefficient operations and necessitates coor-
dination and exchange of information across the layers. Additionally, broader
aspects of ensuring the health of the cloud system such as energy management,
decentralized control, failure resilience and tools for infrastructure assessment are
needed to provide a more holistic solution. The remainder of this section presents
some existing efforts to address a few of these challenges in the context of two
systems that provide cloud assessment and multi-cloud management capabilities.

HP Cloud Assure
HP Cloud Assure [16] is a cloud management offering delivered via HP Software-as-
a-Service, and is a suite of solutions for assessing security, performance, and avail-
ability of cloud services. It is a turnkey solution applicable to IaaS, PaaS, and SaaS.

• Security is assessed by performing security risk assessment, common security
policy definitions, automated security tests, centralized permissions control,
and web access to security information. Further assessment is done by
scanning networks, operating systems and web applications and performing
automated penetration testing.

FIGURE 8.5

Nimsoft application monitoring Salesforce.com.

344 CHAPTER 8 Managing the Cloud

http://Salesforce.com

• Performance is assessed by testing for bandwidth, connectivity, scalability, and
end-user experience. HP Cloud Assure offers a comprehensive performance
testing service to make sure the cloud providers meet end-user bandwidth and
connectivity requirements and that the cloud applications scale to support peak
usage.

• Availability is assessed by testing and monitoring web-based application
business processes and identifying and analyzing performance issues and
trends. HP Cloud Assure monitors the cloud-based applications, isolates
problems, and identifies root causes with ability to drill-down into specific
application components.

RightScale
RightScale [17] provides automated solutions for cloud management, and has sup-
port for managing interactions with multiple cloud infrastructures. Figure 8.6
gives the key modules of RightScale, which are briefly described here:

• Cloud Management Environment provides the Management Dashboard
similar to the one provided by Amazon CloudWatch and Matrix. It is also a
place where the administrator can get access to the server templates and other
deployment information,

• Cloud-Ready ServerTemplates provide pre-packaged solutions based on best
practices for common application scenarios to speed up deployments on the
cloud. Multiple groups of servers can be architected to work together.

Management
dashboard

User
permissions

Lifecycle
support

Cloud aware server templates

Customer
library

Rightscale
library

Partner
library

Automation engine

Cloud infrastructure

Rules Monitoring Alerts Responses

API

Multi-cloud engine

Cloud management environment

FIGURE 8.6

RightScale Cloud management platform.

Other Cloud-Scale Management Systems 345

• Adaptable Automation Engine adapts resource allocation as required by system
demand, system failures or other events based on active monitoring. Tools are
provided for managing multi-server deployments over the entire lifecycle.

• Multi-Cloud Engine interacts with the cloud infrastructure APIs of multiple
cloud providers. This eliminates lock-in to any single cloud vendor and allows
deployment across multiple clouds, including ability to move applications from
one cloud to another.

Compuware
Compuware [18] offers a cloud monitoring suite of products that directly measure
the performance experienced by end users and customers. It allows for detecting
and diagnosing performance problems experienced by a cloud application, priori-
tizing the problems in terms of business impact, and helping resolution of the
problem.

For detecting performance problems, Compuware offers the following methods:

• Real-user monitoring: data can be collected from access devices of actual users
to detect performance problems in the cloud application

FIGURE 8.7

Compuware Gomez Cloud monitoring platform [19].

346 CHAPTER 8 Managing the Cloud

• Synthetic monitoring: The cloud application can also be monitored but by
listening posts on the following networks:
• Compuserve’s own network of servers that reside on local networks worldwide
• Compuserve’s network of servers that reside on the Internet backbone
• Any office or data center of the enterprise

By correlating the data from all the sources, the cause of the problem (e.g., the
cloud provider, or network congestion) can be determined.

Figure 8.7 shows a screenshot of the Compuware monitoring platform [20]. As
can be seen from the sample dashboard, data about the performance of applica-
tions as well as the infrastructure are shown. Further, the overall performance of
machines at various locations is shown to identify potential network issues. More
details of such cloud scale monitoring can be found at [20], which is a virtual
community setup to foster a collaboration between organizations interested in
exchanging strategies, best practices and resources for deploying and managing
applications in the cloud.

SUMMARY

The shift of IT systems to the cloud represents a paradigm change in the develop-
ment of computing and storage systems. This poses several new challenges for
the design of effective management technologies. Traditional monitoring and man-
agement technologies were developed for enterprise environments typically cater-
ing to single customer environments deployed in the range of thousands of
servers. Cloud systems represent multi-tenant environments providing computing
systems and applications as a service to consumers as a utility. These systems are
in the range of tens of thousands of servers, and are growing fast to several tens
of thousands of servers serving millions of users. Existing cloud deployments
mostly rely on traditional monitoring and management systems that do not cater
to all of the cloud needs. While efforts are being made to address these gaps (as
illustrated by example systems presented earlier in this chapter), several open
research challenges remain to designing fully automated, closed-loop management
solutions for meeting customer service level agreements (SLAs) and cloud provi-
der cost metrics. Some of these key challenges are as follows.

Cross-layer optimization across IaaS, PaaS, SaaS layers: The separation of
functionality across IaaS, PaaS, SaaS layers provides a good abstraction for cloud
systems, however, having separate management systems for these layers results in
silo-ed operations and subsystem-level solutions. Much can be done to improve
efficiency through coordination and exchange of information across these layers.
Higher-layer SLAs need to be effectively translated to lower layers to make man-
agement decisions at those layers (e.g., at IaaS) SLA-aware. Similarly, lower-layer
abstractions can be exposed as appropriate to higher layers in the stack to make
them more effective for the cloud operation.

Summary 347

Scale for monitoring and management: Traditional monitoring and
management systems are typically centralized. These approaches won’t scale to
the several tens of thousands (and potentially millions) of management objects
in cloud systems. Approaches that are more distributed, and have scalability
properties that allow easy scale-up and scale-down of the monitoring and
management systems, are yet to be designed. Furthermore, scale goes beyond
raw system size in that one also has to take into account the multiple time and
length scales at which different system components and levels of abstraction
operate – for example, queries for entire data center health vs. a specific disk
subsystem, or managing high rate web requests vs. lower rate virtual machine
migrations.

Sustainability and energy management: Given the scale and scope of cloud
data centers, energy efficiency is a critical requirement to meet cost, regulations,
and environmental constraints. Power and cooling systems are a growing fraction
of the costs in data centers, and techniques that minimize power consumption and
use intelligent mechanisms for cooling are needed. In addition, the problem needs
an end-to-end perspective wherein sustainability needs to be the driving factor
during the manufacturing of cloud server systems, as well as day-to-day opera-
tions of cloud data centers.

In addition, future research can enable better accounting and billing techniques
to more accurately leverage monitoring information from clouds. Federation of
management systems across multiple clouds, both public and private is another
area of future improvements.

This chapter studied many commercial solutions for cloud management. It first
looked at management support at each of the cloud layers – IaaS, PaaS and SaaS.
The features provided by CloudSystem Matrix to control elasticity or on-demand
provisioning of resources were studied. A detailed look at the runtime monitoring
features of Amazon CloudWatch was presented next. To understand the roles and
responsibilities of managing a PaaS system, the SLA management and monitoring
aspects of Azure were studied. Two monitoring systems for Salesforce were studied
to appreciate the techniques that can be used for SaaS management. Finally, the chap-
ter examined products that try to cross-layer monitoring needs and help improve
the performance of the end-to-end cloud application irrespective. Chapter 10,
Future Trends and Research Directions, describes a more advanced large-scale
management and monitoring system called Open Cirrus that addresses some of the
concerns around sustainability and energy management.

References
[1] HP CloudSystem Matrix. http://www.hp.com/go/matrix; [accessed 09.10.11].
[2] HP SiteScope software. http://www8.hp.com/us/en/software/software-product.html?

compURI=tcm:245-937086; [accessed 09.10.11].
[3] Amazon CloudWatch. http://aws.amazon.com/cloudwatch/; [accessed 09.10.11].

348 CHAPTER 8 Managing the Cloud

http://www.hp.com/go/matrix
http://www8.hp.com/us/en/software/software-product.html?compURI=tcm:245-937086
http://www8.hp.com/us/en/software/software-product.html?compURI=tcm:245-937086
http://aws.amazon.com/cloudwatch/

[4] CloudWatch DashBoard. http://d36cz9buwru1tt.cloudfront.net/console_thumb_cw_1.png.
Accessed from http://aws.amazon.com/console/ on 14 Oct 2011; [accessed 09.10.11].

[5] CloudWatch Graph Metrics. http://d36cz9buwru1tt.cloudfront.net/console_thumb_
cw_2.png. Accessed on 13 Oct 2011 from http://aws.amazon.com/console/; [accessed
09.10.11].

[6] Metrics, http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/;
[accessed 09.10.11].

[7] Windows Azure. http://www.microsoft.com/windowsazure/; [accessed 09.10.11].
[8] Windows Azure AppFabric Service Bus. Access control and caching SLAs. http://

www.microsoft.com/download/en/details.aspx?displaylang=en&id=4767; [accessed
09.10.11].

[9] Windows Azure Service Level Agreements. https://www.microsoft.com/windowsazure/sla/;
[accessed 09.10.11].

[10] Monitoring and Diagnostic Guidance for Windows Azure hosted applications. http://
download.microsoft.com/download/4/C/B/4CB0167F-B6D9-4B46-8DF1-69CCCA66FD
DE/SystemCenterOperationsManagerMonitoringforAzureHostedAppsatMicrosoft.pdf;
[accessed 09.10.11].

[11] Windows Azure MMC. http://code.msdn.microsoft.com/windowsazuremmc; [accessed
09.10.11].

[12] Azure from the trenches, vol 1. http://bit.ly/downloadazurebookvol1; [accessed
09.10.11].

[13] NetCharts. http://sites.force.com/appexchange/listingDetail?listingId=a0330000000gujqAAA;
[accessed 09.10.11].

[14] Nimsoft. http://www.nimsoft.com/solutions/; [accessed 09.10.11].
[15] Nimsoft for Salesforce CRM. http://v4.nimsoft.com/solutions/images/cloud_salesforce_

cloud.png; [accessed 09.10.11].
[16] HP CloudAssure. http://www.hp.com/go/cloudassure/; [accessed 09.10.11].
[17] RightScale Cloud Computing Management Platform. http://www.rightscale.com/;

[accessed 09.10.11].
[18] Application Performance Management. Driven by End-User Experience, Compuware.

http://www.gomez.com/wp-content/downloads/19560_APM_Overview_Br.pdf;
[accessed 09.10.11].

[19] Web Performance Monitoring. http://www.gomez.com/wp-content/downloads/
19779_Web_Perf_Monitoring_Br.pdf; [accessed 09.10.11].

[20] CloudSleuth. Decoding the mysteries of the cloud. http://www.cloudsleuth.net;
[accessed 09.10.11].

References 349

http://d36cz9buwru1tt.cloudfront.net/console_thumb_cw_01.png
http://aws.amazon.com/console/
http://d36cz9buwru1tt.cloudfront.net/console_thumb_cw_02.png
http://d36cz9buwru1tt.cloudfront.net/console_thumb_cw_02.png
http://aws.amazon.com/console/
http://docs.amazonwebservices.com/AmazonCloudWatch/latest/DeveloperGuide/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=4767
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=4767
https://www.microsoft.com/windowsazure/sla/
http://download.microsoft.com/download/4/C/B/4CB0167F-B6D9-4B46-8DF1-69CCCA66FDDE/SystemCenterOperationsManagerMonitoringforAzureHostedAppsatMicrosoft.pdf
http://download.microsoft.com/download/4/C/B/4CB0167F-B6D9-4B46-8DF1-69CCCA66FDDE/SystemCenterOperationsManagerMonitoringforAzureHostedAppsatMicrosoft.pdf
http://download.microsoft.com/download/4/C/B/4CB0167F-B6D9-4B46-8DF1-69CCCA66FDDE/SystemCenterOperationsManagerMonitoringforAzureHostedAppsatMicrosoft.pdf
http://code.msdn.microsoft.com/windowsazuremmc
http://bit.ly/downloadazurebookvol1
http://sites.force.com/appexchange/listingDetail?listingId=a0330000000gujqAAA
http://www.nimsoft.com/solutions/
http://v4.nimsoft.com/solutions/images/cloud_salesforce_cloud.png
http://v4.nimsoft.com/solutions/images/cloud_salesforce_cloud.png
http://www.hp.com/go/cloudassure/
http://www.rightscale.com/
http://www.gomez.com/wp-content/downloads/19560_APM_Overview_Br.pdf
http://www.gomez.com/wp-content/downloads/19779_Web_Perf_Monitoring_Br.pdf
http://www.gomez.com/wp-content/downloads/19779_Web_Perf_Monitoring_Br.pdf
http://www.cloudsleuth.net

This page intentionally left blank

CHAPTER

9Related Technologies

INFORMATION IN THIS CHAPTER:

• Server Virtualization

• Two Popular Hypervisors

• Storage Virtualization

• Grid Computing

• Other Cloud-Related Technologies

INTRODUCTION

This chapter reviews multiple technologies that are often confused with cloud
computing, such as Grid computing, Utility computing, Distributed computing,
and Virtualization. Each such technology is briefly described and the similarities,
differences and ways of leveraging it within a cloud infrastructure are discussed.
Additionally, wherever the technology is more relevant to cloud computing
(virtualization) the different design and architectural aspects of the technology are
discussed in detail. Server and storage virtualization is key to cloud computing,
and these key technologies are presented first. Grid computing is considered next
where its similarities and differences with respect to cloud computing are studied.
The final section briefly covers other cloud-related terminologies.

SERVER VIRTUALIZATION
Server virtualization is a key technology that enables Infrastructure as a Service
(IaaS). It abstracts away the physical hardware that the software (application as
well as OS) is running on, and makes it appear as if the software is running in a
virtual machine (or virtual hardware). As a result, server virtualization is used
to provide the following important features of cloud computing. Since the soft-
ware appears to be running in a virtual machine, applications can be moved
from one physical machine to another by recreating the virtual machine on the
target physical hardware. This is used for load balancing, as well as for consoli-
dating multiple virtual machines on the same physical hardware, leading to more

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00009-3
© 2012 Elsevier, Inc. All rights reserved.

351

http://dx.doi.org/10.1016/B978-1-59749-725-1.00009-3

efficient use of the hardware and improved availability. Furthermore, since each
application is running in its own virtual machine, it cannot interfere with appli-
cations running in other virtual machines. This aspect is important for imple-
menting multi-tenancy and is similar to the way a process can only access its
own virtual address space, and is prevented from accessing the virtual address
space of other processes.

The following gives an overview of how server virtualization is accomplished,
after which a detailed description of hypervisor-based virtualization that is used in
IaaS implementations is presented. Finally, two important virtualization solutions –
Xen and VMWare – are studied to illustrate how these virtualization techniques
are used.

There are broadly two main categories of software virtualization, namely
system virtualization and process virtualization [1]. In process virtualization,
the virtualization software runs above the OS and hardware combination and only
provides user-level instructions (ABI) or OS library (API) compatibility (typically
called runtime support). Examples of process virtualization include Sun’s Java
Virtual Machine, Microsoft’s .Net, or even binary translators like HP ARIES and
Transmeta Crusoe. On the other hand, in system virtualization, the virtualization
software is in between the host hardware machine and the guest software and its
primary role is to provide virtualized hardware resources as depicted in Figure 9.1.
System virtualization enables elasticity in hardware without affecting the guest
software – a primary requirement for cloud computing. We therefore, focus mainly
on system virtualization in this section.

VM1

App1 App2 Appn

OS

Virtualization Software / VMM

Original HW
Platform

HW on
demand

OS OS

VM2 VM n

FIGURE 9.1

System virtualization.

352 CHAPTER 9 Related Technologies

Hypervisor-based Virtualization
The software responsible for system virtualization is called the Virtual Machine
Monitor (VMM) or hypervisor. The combination of OS and application that
runs on top of the virtualization software is called a guest or Virtual Machine
(VM). A hypervisor allows multiple operating systems to run concurrently on the
host hardware (Figure 9.1). These instances can potentially be used by different
users and hence hypervisors also provide the isolation between the different guest
processes, which is key to supporting multi-tenancy. Further, the hypervisor han-
dles any changes to the processor the application is running on without affecting
the user’s OS or application, providing the most needed agility for a cloud
infrastructure.

Virtualization as such is not a new technology, having been first implemented
in IBM mainframes. In 1967, CMS single-user OS running on top of the CP-40
hypervisor was one of the earlier time-sharing systems [2]. The benefits of virtua-
lization, such as server consolidation and isolation between applications, quickly
became apparent and virtualization became a standard feature on mainframes [3].
Interest in virtualization spread beyond mainframes with the Disco project at
Stanford [4] which showed that by the use of hypervisors, it was possible to effi-
ciently run multiple instances of Silicon Graphics IRIX OS on a NUMA multipro-
cessor without rewriting IRIX. This led to the development of hypervisors for
Unix systems to enable server consolidation. We discuss details of hypervisor
based virtualization next.

Types of Hypervisors
Hypervisors are classified into two categories: Native hypervisors and hosted
hypervisors [3]. Bare metal or native hypervisors run directly on the hardware,
providing all the features (e.g., I/O) needed by the guests (Figure 9.1). Hosted
hypervisors run on top of an existing OS and leverage the features of the underly-
ing OS. Virtual machines run on top of the hosted hypervisor, which runs on top of
an existing OS. This is inefficient, so the inefficiencies of hosted architectures have
led to the development of hybrid hypervisors [5] where the hypervisors
run directly on the hardware, but leverage the features of an existing OS running as
a guest (Figure 9.2). Bare metal hypervisors include the early mainframe hypervi-
sors as well as VMWare ESX server, and kvm, a hypervisor for Linux. Hosted
hypervisors include VMWare GSX server. Xen and Microsoft’s Hyper-V are
examples of hybrid hypervisors.

NOTE
Types of Hypervisors:
• Native Hypervisor
• Hosted Hypervisor
• Hybrid Hypervisor

Server Virtualization 353

Techniques for Hypervisors
There are different techniques used for hypervisor-based virtualization. Trap and
emulate virtualization is a basic technique used from the days of the earliest
hypervisors. This technique, however, has some limitations and multiple
approaches to overcome those have been developed, such as binary emulation and
paravirtualization. More details follow.

Trap and Emulate Virtualization
At a very high level, all three types of hypervisors described earlier operate in a
similar manner. In each case, the guests continue execution until they try to access
a shared physical resource of the hardware (such as an I/O device), or an interrupt
is received. When this happens, the hypervisor regains control and mediates
access to the hardware, or handles the interrupt.

To accomplish this functionality, hypervisors rely on a feature of modern pro-
cessors known as the privilege level or protection ring. The basic idea behind
privilege levels is that all instructions that modify the physical hardware config-
uration are permitted at the highest level, At lower levels, only restricted sets of
instructions can be executed. Figure 9.3 shows the protection rings in the Intel
x86 architecture [6], as an example. Other hardware architectures have similar
concepts. There are four rings, numbered from 0 to 3. Programs executing in Ring 0
have the highest privileges, and are allowed to execute any instructions or access
any physical resources such as memory pages or I/O devices. Guests are typically
made to execute in ring 3. This is accomplished by setting the Current Privilege
Level (CPL) register of the processor to 3 before starting execution of the guest.

VM1

App1 App2

OS

Virtualization software / VMM

Original HW
platform

HW on
demand

OS

VM2 VM n

Service
OS

FIGURE 9.2

Hybrid hypervisor.

354 CHAPTER 9 Related Technologies

If the guest tries to access a protected resource, such as an I/O device, an interrupt
takes place, and the hypervisor regains control. The hypervisor then emulates the I/
O operation for the guest. The exact details depend upon the particular hypervisor
(e.g., Xen or Hyper-V) and are described in detail later. Note that in order to emu-
late the I/O operation, it is necessary for the hypervisor to have maintained the state
of the guest and its virtual resources.

Limitations of Trap and Emulate Virtualization
The trap and emulate technique has two major limitations. First, as in any other
emulation technique, there is some amount of performance overhead incurred due
to this technique. Second, and more importantly, not all architectures are suitable
for implementing trap and emulate virtualization. A formal specification of the
properties a computer architecture must have to be virtualizable is discussed by
Popek et al. [7]. In order to be virtualizable, the set of sensitive instructions must
be a subset of the privileged instructions. Sensitive instructions are defined as
those that are either behavior sensitive or control sensitive. Behavior sensitive
instructions are those whose behavior depends on the processor privilege level. If
behavior sensitive instructions are executed by a guest running under a hypervisor,
the results obtained could be different from executing these with the guest running
directly on the hardware at a higher privilege level, since the results depend upon
the privilege level. This could lead to potential errors in the execution of the

Ring 0

Ring 1

Ring 2

Ring 3

FIGURE 9.3

X86 protection rings.

Server Virtualization 355

guest. Control sensitive instructions are those that change the processor privilege
level, and therefore should be privileged instructions.

An example may clarify this information. On the x86 architecture the popf
instruction can change system flags that control interrupt delivery. If the popf
instruction is executed by a guest in non-privileged mode, there is no trap. Rather,
the attempt to change the system flags fails silently. The x86 architecture, there-
fore, cannot be virtualized using the classical trap and emulate technique [8],
since the hypervisor cannot detect that the guest is executing the popf instruction
and emulate it. The popf instruction is an example of a sensitive instruction that
is not privileged; i.e., does not cause a trap if executed in non-privileged mode.
Clearly, if all sensitive instructions were a subset of the privileged instructions,
the x86 architecture could be virtualized using trap and emulate virtualization.

The other limitation of trap and emulate virtualization is the potential perfor-
mance overhead. As described earlier, the guest generates a trap whenever it tries
to directly access the physical resources of the system, such as I/O. A straightfor-
ward and general method for dealing with this is to emulate the access. Thus, if
the guest OS sets up a I/O request consisting of a SCSI request block which is
then queued for execution, the hypervisor can emulate the execution of the request
on the virtual disk that is exposed to the guest. This can lead to a great deal of
performance overhead, since emulation is necessarily slower than direct execution
in the hardware. Additionally, there is the context switch overhead from the guest
to the hypervisor.

Software Extensions to Trap and Emulate Virtualization
Two major software techniques can be used to overcome the limitations of trap
and emulate virtualization. One technique is binary translation. Here the hypervi-
sor includes a binary translator which replaces the sensitive instructions by equiva-
lent non-sensitive instructions at run-time, and leaves non-sensitive instructions
unchanged [8]. The technique is similar to just-in-time translation in JVMs, and
yields similar overheads.

The other software technique is paravirtualization, where the guest is modi-
fied (re-written) not to use the sensitive instruction, but to directly invoke hypervi-
sor APIs which would provide an equivalent service. Paravirtualization is widely
used for reducing the overheads associated with I/O virtualization. In the context
of the I/O request example earlier, the guest OS would execute a hypervisor API
that would perform the I/O. The disadvantage with this technique is that it is not
hypervisor-independent; i.e., the modifications have to be carried out for every
hypervisor under which the guest could run. So, paravirtualization requires rewrit-
ing of the guest OS.

Hardware Support for Virtualization
To provide more efficient support for virtualization, Intel and AMD created new
processor extensions to support virtualization in the hardware. In the following

356 CHAPTER 9 Related Technologies

subsections, we first describe VT-x, an Intel technology that helps virtualize Intel
x86 processors. Next, we provide an overview of a technique called Extended
Page Tables (EPT) which helps virtualize memory, followed by VT-d, a technol-
ogy to assist in the virtualization of I/O. Similar hardware assists are available for
AMD processors. As an example, the Intel i3-2100 processor supports VT-d and
AMD-V is supported by AMD Athlon 64 X2 family of processors.

Hardware Support for Processor Virtualization
VT-x, earlier called VanderPool, represents Intel’s technology for virtualization
on x86 processors. VT-x provides hardware assists for virtualization by defining
two modes for processor execution: VMX root operation and VMX non-root
operation [9]. Hypervisors are intended to execute in VMX root operation, which
is almost identical to normal execution in earlier x86 processors without VT-x.
Guests execute in VMX non-root operation, which has been defined to help sup-
port virtualization. In each mode of operation, there are four privilege levels.
Thus, the hypervisor can operate at ring 0 in VMX root operation, and guests can
operate at ring 0 in VMX non-root operation (see Figure 9.4).

Recall from the earlier discussion that two major responsibilities of hypervisors
are, first, the necessity of ensuring that sensitive instructions execute correctly, and
second, keeping track of the state of the guest. VT-x provides assistance for both
of these features. To implement its functionality, VT-x makes use of a new data
structure called the Virtual Machine Control Structure (VMCS). VMCS pro-
vides facilities for controlling the execution of sensitive operations as well as sav-
ing the state of guests. Additionally, VMCS also provides facilities for storing the
state of the hypervisor. Full details of the operation of VT-x are beyond the scope
of this book and can be found in an interesting article by Rich Uhlig et al. [9].

VM Enter

VM Exit

VMCALL
(or) exception

Ring 0
Guest OS

Ring 1

Ring 2

Ring 3
Apps

Guest
context

Ring 0
Hypervisor

Ring 1

Ring 2

Ring 3
Apps

Hypervisor
context

VMLAUNCH

VMRESUME

FIGURE 9.4

VT-x provides clean privilege separation.

Server Virtualization 357

How does VT-x save the guest state? Conceptually, the method by which the
processor state of the guest is saved under VT-x is simple. When a guest ceases
execution and exits to the hypervisor (called VM exit), the state of the guest
(including all processor state registers and control registers) is saved in the VMCS
and the state of the hypervisor restored in the VMCS. The reverse process is fol-
lowed when a guest is dispatched for execution by the hypervisor (a process
called VM entry).

How does VT-x assist in correct execution of sensitive instructions? Consider
the case where a guest OS (which is executing in VMX non-root operation)
wishes to execute instructions to mask all interrupts. This is controlled by two
controls in the VMCS. If the external interrupt exiting control is set, then all
external interrupts will cause control to transfer to the hypervisor. If the inter-
rupt-window exiting control is set, then the guest will not be interrupted until it
enables interrupts. When the guest attempts to execute instructions to mask inter-
rupts, the hypervisor can set the two controls appropriately. Then, when an inter-
rupt occurs, the hypervisor can check the settings of the controls to decide
whether to keep the interrupts pending or reflect them to the guest.

The hypervisor can also decide how to handle privileged instructions. Certain
instructions that would unsafely change processor state (e.g., CPUID, RDMSR)
always cause traps to the hypervisor. However, the action taken with certain other
instructions (e.g., HLT, INVLPG) can be configured appropriately.

Hardware Support for Memory Virtualization
Before discussing hardware assists for memory virtualization, one should under-
stand the performance overheads associated with the trap and emulate technique.
Virtual memory is generally implemented by page tables in the hardware that map
virtual addresses to physical addresses. Additionally, to speed up processor execu-
tion, translations of frequently used addresses are cached in TLBs, so that these
translations need not be computed from the page tables.

In a virtualization scenario, guests can no longer be allowed to directly manage
the page tables and TLBs. Instead, the hypervisor has to trap all attempts by the
guest OS to modify the page tables and TLBs and set up the appropriate map-
pings. Specifically, the guest OS would attempt to create a mapping between
guest virtual addresses and guest physical addresses (addresses that the guest
thinks are physical addresses). For example, the guest may try to create a page
table entry stating that page p is mapped to physical address x. However, since
the guest does not have access to the physical memory, this page may actually
refer to physical page y. x is referred to as a guest physical address. For correct
operation of the system, the hypervisor has to load the map between the guest vir-
tual addresses and actual physical addresses into the page table (in the previous
instance, between p and y). The hypervisor maintains this mapping in shadow
page tables with the help of an auxiliary mapping from guest physical addresses
to actual physical addresses.

358 CHAPTER 9 Related Technologies

NOTE
Reduce overheads of memory virtualization using
• Extended Page Tables (EPT)
• Virtual Processor ID (VPID)

In the previous scenarios, trapping the guest when it tries to modify the page
tables is a source of performance overhead. Also, maintenance of shadow page
tables is complex and prone to error. An additional source of performance over-
head is the necessity of purging the TLB each time a new guest executes, since
translations valid for one guest would not be valid for another guest.

In order to overcome the previously described performance overheads, there
are two hardware assists for memory virtualization in Intel x86 processors [10].
The first consists of the Extended Page Tables (EPT). EPT support is enabled
by setting the appropriate fields in the VMCS control structure. Figure 9.5 illus-
trates the operation of EPT. The guest stores the mapping from the guest virtual
page to the guest physical page in the page tables. The hypervisor stores the map-
ping from the guest physical page to the actual physical page. During operation,
the processor looks up both tables in sequence to compute the translation. In the
example earlier, to translate page p, the processor first looks up the page tables to
get the guest physical page x. Subsequently, it looks up x in the EPT to find the
actual physical page y.

EPT allows the guest full control over the processor page tables, enhancing
performance by removing the need to trap the guest each time it tries to access
the page tables. The hypervisor may trap the guest only the first time it tries to
access guest physical page x in order to map x in the EPT; or it may have allo-
cated physical pages to the guest in advance, so the trap is not needed in general.
In either case, performance is enhanced.

The other assist for memory virtualization is the Virtual Processor ID
(VPID). This is also enabled in the VMCS structure. VPID eliminates the need
for the hypervisor to flush the TLB upon the exit of a VM. This is because the
processor tags each translation stored in the TLB with the VPID associated with

Guest virtual
page p

Guest physical
page x

Physical
page y

Page tables Extended page
tables

FIGURE 9.5

Extended page tables.

Server Virtualization 359

the VM. The VPID is associated with the VM by the hypervisor in the VMCS
structure.

Hardware Support for IO Virtualization
Trap and emulate virtualization introduces overheads in I/O functionality as well.
The overheads occur in two phases:

1. During VM initialization while the VM discovers the I/O (network and
storage) adapters and devices attached;

2. During VM operation when each I/O request is trapped and emulated by the
hypervisor (since the VM cannot be allowed to access the physical devices).

More detail on these overheads follows. After the system boots up, the hypervisor
will be ready to present (to any VM) a number of I/O adapters in PCI/PCIe slots, as
well as a number of virtual devices (virtual network switches and disks) to which
these virtual adapters appear to be connected. Then, traps will occur during VM
initialization when the guest accesses the virtual adapters to initialize them, as well as
discover the virtual network switches and virtual disks the VM is connected to. In the
case of virtual disks, the guest will attempt to initialize the virtual disks, which will
typically map to a disk partition, a logical volume or a file.

During guest operation, the guest may attempt to send messages over its net-
work adapter. The hypervisor would have to trap these messages, and route them,
either to another VM in the system, or to a remote system. In the case of I/O
requests to a storage device, the hypervisor would have to emulate the I/O to the
disk partition, logical volume, or file. I/O emulation would require the hypervisor
to receive interrupts, and then reflect them to the appropriate guest. It may also
involve the additional overhead of doing the I/O to hypervisor address space, and
then copying the data to the VM address space.

NOTE
Reduce overheads of I/O virtualization using
• Interrupt Remapping
• DMA Remapping

Intel’s VT-d technology can reduce the overhead of I/O virtualization. It has
two components, Interrupt Remapping and DMA Remapping [5]. DMA
remapping is targeted at eliminating the need for hypervisors to translate guest
virtual addresses in I/O commands. It allows hypervisors to define protection
domains (which correspond to VMs) and define, for each protection domain,
address translation tables that translate guest virtual addresses to physical
addresses. This also provides isolation between the different guests, since one
guest would not be able to do I/O to the address space of another guest. Addition-
ally, it also eliminates the overhead of copying the data from hypervisor address
space to guest address space (after the I/O transfers data to hypervisor address

360 CHAPTER 9 Related Technologies

space). Interrupt remapping is a technology that allows the hypervisor to ensure
that interrupts from I/O devices can be delivered directly to the appropriate guest.
By removing the need for the hypervisor to intervene when a guest tries to access
I/O devices and adapters, it can be seen that VT-d reduces the overhead of I/O
virtualization.

Note that VT-d technology may not be appropriate in all circumstances. For
example, VMWare provides the option of using a file to emulate a disk storage
device. VT-d cannot be used to support this kind of virtualization, since I/O to the
file has to be carried out by some file system, and not directly by the CPU. In
general, VT-d can be used for virtualization of I/O to devices that are emulated in
the hardware.

TWO POPULAR HYPERVISORS
As described earlier, virtualization is a complex technology involving techniques
for virtualizing CPU, memory and I/O. In the following subsection, two well-
known hypervisors – VMWare and XenServer – are studied to illustrate how they
use the techniques described earlier.

VMware Virtualization Software
VMware Inc. is a popular provider of virtualization software for desktops and
enterprise servers. The VMware hypervisor makes use of all the virtualization
technologies previously described [11]. Figure 9.6 shows the architecture of the
VMware ESX 3i server [12]. Each virtual machine runs on top of a Virtual
Machine Monitor (VMM), which is a process running under the vmkernel. The
vmkernel which contains OS functions, such as scheduling and networking, runs

VMX

Vmkernel: scheduling, storage, networking

Hardware

Linux

VMM

FIGURE 9.6

High-level architecture of VMware ESX 3i server.

Two Popular Hypervisors 361

on top of the hardware. Each VM also has a helper process called VMX
associated with it.

For CPU virtualization, the VMM uses a combination of binary translation and
VT-x. The VMware VMM uses paravirtualization for I/O virtualization. For
Windows, where the source code is not available, the VMWare VMM uses the
Windows filter driver framework [13]. This allows code to be installed above
the Windows I/O drivers that will make hypervisor calls to vmkernel for I/O.

XenServer Virtual Machine Monitor
XenServer1 is a widely used open source hypervisor available under GNU GPL
v2. The architecture of XenServer is shown in Figure 9.7. In XenServer, the guest
VMs are called domains. Domain 0 is a specially privileged VM which has access
to the physical hardware. XenServer makes use of paravirtualization for I/O
virtualization; I/O requests from any other non-domain 0 VM (called domU) are
sent to dom0. In Linux, the paravirtualization is accomplished by rewriting the
Linux code. Since Windows source code is not available, XenServer does not offi-
cially support Windows. Support for Windows using the various hardware assists
(called HVM mode in Xen terminology) is in an experimental mode at this time.
Similarly to VMware, Xen also leverages the VT-x, VT-d, EPT and VPID hardware
assists. Xen does not use binary translation.

The architecture of Xen differs from VMware in that in Xen, the support for
virtualization is split between the Xen hypervisor and Dom0. This allows Xen to
leverage an already existing OS for Dom0; in fact, Dom0 is a version of Linux,
allowing Xen to leverage the evolving capabilities of Linux for managing hard-
ware, and focusing the energies of the Xen developers upon hypervisor support.

To summarize, server virtualization involves techniques for virtualizing the
CPU, memory, and I/O. The classic technique for virtualization is trap and

1Before acquisition by Citrix, XenServer was known simply as Xen. These two terms are used
interchangeably here.

DomU:
Windows

DomU:
Linux

Xen

Hardware

Domo:
(Service OS)

FIGURE 9.7

XenServer architecture.

362 CHAPTER 9 Related Technologies

emulate, but it has some high overheads and in some cases (x86 architecture) may
not be feasible. In this case, binary rewriting or Intel’s VT-x technology can be
used. For memory virtualization, paravirtualization or Intel’s EPT and VPID tech-
niques can reduce virtualization overhead. However, the disadvantage of paravir-
tualization is that it requires rewriting of the guest OS. Paravirtualization can also
reduce the overheads associated with I/O virtualization. In some circumstances,
Intel’s VT-d technology can also reduce I/O virtualization overheads. As described
in Chapter 6, server virtualization helps in realizing some of the critical character-
istics of a cloud infrastructure (IaaS), such as multi-tenancy, elasticity, availability
and also in dramatically increasing the utilization levels of the cloud infrastructure.

STORAGE VIRTUALIZATION
In addition to scaling CPU resources (described in the previous section), cloud
environments for IaaS have to scale storage resources as well. Similarly to CPU
virtualization, there exist techniques for virtualizing storage resources to enable on-
demand addition and deletion of storage.

Storage Virtualization can be defined as a means through which physical stor-
age subsystems are abstracted from the user’s application and presented as logical
entities, hiding the underlying complexity of the storage subsystems and nature of
access, network or direct, to the physical devices. As in server virtualization, this
abstraction helps applications to perform normally despite changes to the storage
hardware. Storage virtualization also enables higher resource utilization by aggre-
gating the capacity of multiple heterogeneous storage devices into storage pools,
enables easy provisioning of the right storage for performance or cost, as well as
provides ability to centrally manage pools of storage and associated services.

Broadly, there are two categories of storage virtualizations: file level and block
level. A file system virtualization provides an abstraction of a file system to the
application (with a standard file-serving protocol interface such as NFS or CIFS)
and manages changes to distributed storage hardware underneath the file system
implementation. Block-level virtualization, on the other hand, virtualizes multiple
physical disks and presents the same as a single logical disk. The data blocks of
this logical disk may be internally mapped to one or more physical disks or may
reside on multiple storage subsystems. Different techniques are used to handle the
complexity and optimized usage of these two types of storage virtualizations.

File Virtualization
File virtualization creates an abstraction layer between file servers and their
clients. This virtualization layer manages files, directories or file systems across
multiple servers and allows administrators to present users with a single logical
file system. A typical implementation of a virtualized file system is as a network
file system that supports sharing of files over a standard protocol with multiple

Storage Virtualization 363

file servers enabling access to individual files. File-serving protocols that are
typically employed are NFS, CIFS and Web interfaces such as HTTP/WebDAV.

Simple implementations of network file systems and virtualized file systems
that provide a single name space are covered in traditional textbooks [14]. The
focus here will be on techniques to implement scalable file virtualization such as
distributed file systems, which is of relevance to cloud computing.

A distributed file system (DFS) is a network file system wherein the file sys-
tem is distributed across multiple servers. DFS enables location transparency and
file directory replication as well as tolerance to faults. Some implementations may
also cache recently accessed disk blocks for improved performance. Though distri-
bution of file content increases performance considerably, efficient management of
metadata is crucial for overall file system performance. It has been shown that
75% of all file system calls access file metadata [15] and distributing metadata
load is important for scalability. Scaling metadata performance is more complex
than scaling raw I/O performance since even a small inconsistency in metadata
can lead to data corruption. There are two important techniques for managing
metadata for highly scalable file virtualization:

a. Separate data from metadata with a centralized metadata server (used in Lustre,
Panasas [16–18])

b. Distribute data and metadata on multiple servers (used in Gluster, Ibrix [19, 20]
Nirvanix)

Distributed File Systems with Centralized Metadata
A centralized metadata management scheme achieves scalable DFS with a dedicated
metadata server to which all metadata operations performed by clients are directed.
Lock-based synchronization is used in every read or write operation from the clients.
The detailed working of such a system can be studied using the popular open source
file system called Lustre. In centralized metadata systems, the metadata server can
become a bottleneck if there are too many metadata operations. However, for work-
loads with large files, centralized metadata systems perform and scale very well.

Lustre
Lustre is a massively parallel, scalable distributed file system for Linux which
employs a cluster-based architecture with centralized metadata. This is a software
solution with an ability to scale over thousands of clients for a storage capacity of
petabytes with high performance I/O throughput. Lustre is available for free
download under GNU GPL license and was used by half of the top 30 supercom-
puters at the time of writing of this book.

The architecture of Lustre (Figure 9.8) includes the following three main
functional components, which can either be on the same nodes or distributed on
separate nodes communicating over a network [21]:

1. Object storage servers (OSSes), which store file data on object storage targets
(OSTs).

364 CHAPTER 9 Related Technologies

2. A single metadata target (MDT) that stores metadata on one or more Metadata
servers (MDS), and

3. Lustre Clients that access the data over the network using a POSIX interface.

When a client wishes to perform an operation on a file, it consults the MDT, a
dedicated file system, to discover which objects constitute a file. These objects are
stored on one or more OSTs. An OST is also a dedicated file system that exposes
read/write operations to data objects. Disk storage attached to the servers can be
directly partitioned and formatted as file systems. Optionally, they can be orga-
nized as LVs (logical volumes) using the Logical Volume Manager. The OSS and
MDS servers store data using a modified version of the EXT3 file system.

Lustre can stripe files over multiple OSTs for better file I/O speeds. When
multiple objects are associated with a file (MDS inode), data in the file is striped
across all the objects. Hence, capacity and bandwidth scaling is achieved depend-
ing on the number of OSTs a file is striped over. With striping, the first chunk of
the file is placed on the first disk, the second chunk on the second disk, and so
on, until all the OSTs have been used up, at which point the file wraps around to
the first disk. The number of bytes in a chunk is user-specifiable. To use striping,
a Lustre client must use the Lustre Logical (Object) Volume manager (LOV).

A brief overview of the end-to-end operation of Lustre follows. When a client
accesses a file, it does a filename lookup on a MDS. Then, MDS creates a meta-
data file on behalf of the client or returns the layout of an existing file. The client
then passes the layout to a logical object volume (LOV) for read or write opera-
tions. The LOV maps the offset and size to one or more objects, each residing on
a separate OST. The client then locks the file range being operated on and

Cluster

Gig Ethernet

Client

Direct Attached
Storage

Storage Storage Array Storage Array

MDT

OST

Client Client

SAN: Fibre Channel

OSS 1 OSS 2 OSS n

MDS 1

MDS 2

FIGURE 9.8

Architecture of Lustre file system.

Storage Virtualization 365

executes one or more parallel read or write operations directly to the OSTs. With
this approach, bottlenecks for client-to-OST communications are eliminated, so
the total bandwidth available for the clients to read and write data scales almost
linearly with the number of OSTs in the file system.

Lustre uses read-only caching of data in the OSS that enhances performance
when multiple clients access the same data set. It also provides other optimization
features such as read-ahead and write-back caching for performance improve-
ments. Striping support described earlier is also a very good way of improving
I/O performance for all files, since reading and writing simultaneously increases
the available I/O bandwidth. Lustre also supports an innovative file-joining feature
that joins files in place, when the file is striped.

Lustre has a very good failover feature which adds to the availability of the
solution [22]. As in other cluster configurations, failover support in a cluster is
provided by configuring duplicate servers to perform the functionality; typically
they are configured in pairs. In most clusters, there are two types of failovers con-
figured – they are active/active or active/passive. In an active/passive configuration,
the active node provides resources and serves data while the passive node stands
by in idle state. When the active (primary) node fails, the passive (secondary) node
comes in and takes over the functionality. In an active/active functionality, both
the nodes are active and each provides a subset of resources. If one of the nodes
fails, the second node takes over the resources from the fail node.

The active/active configuration is recommended for an OSS. Though multiple
OSSes are configured to serve an OST, at any point, the OST is partitioned
between the OSSes. For MDT failover, on the other hand, an active/passive con-
figuration is required; i.e., two MDSes are configured for every MDT, and only
one is active at any point in time.

Let us look at a failover scenario. When a client attempts to do I/O to a failed
Lustre target, it continues to try until it receives an answer from any of the config-
ured failover nodes for the Lustre target. A user-space application does not detect
anything unusual, except that the I/O may take longer than usual to complete.
Therefore, high availability in the Lustre File System is completely application
transparent.

More information, including detailed working of Lustre, is available in a joint
technical report from Sun Microsystems and the National Center for Computational
Sciences [23]. The Lustre Center of Excellence at Oak Ridge [24] and the Lustre
community [25] also contain much detailed information.

Distributed File Systems with Distributed Metadata
The complementary approach to Lustre is distributed metadata management, such
as GlusterFS, where metadata is distributed across all nodes in the system, rather
than using centralized metadata servers. Such systems have greater complexity
than centralized metadata systems, since the metadata management is spread over
all the nodes in the system.

366 CHAPTER 9 Related Technologies

GlusterFS
GlusterFS is an open-source, distributed cluster file system without a centralized
metadata server [26]. It is also capable of scaling to thousands of clients, Peta-
bytes of capacity and is optimized for high performance. It is accompanied by a
web-based management interface and installer that makes it more suitable for
cloud computing even from a user interface perspective (Figure 9.9).

GlusterFS employs a modular architecture with a stackable user-space design.
It aggregates multiple storage bricks on a network (over Infiniband RDMA or
TCP/IP interconnects) and delivers as a network file system with a global name
space. Unlike Lustre, it does not employ a separate index of metadata. Instead it
employs a new technique called Elastic Hash Algorithm, which avoids metadata
lookup, adding to better performance [27]. It is also different in its failover archi-
tecture, where every cluster is configured to be active and any file in the entire
file system can be accessed from any server simultaneously.

It consists of just two major components: a Client and a Server. The Gluster
server clusters all the physical storage servers and exports the combined disk-
space of all servers as a Gluster File System. The Gluster client is actually
optional and can be used to implement highly available, massively parallel access
to every storage node and handles failure of any single node transparently.

The GlusterFS server exports storage volumes to remote clients and the Glus-
terFS client accesses remote storage volumes using POSIX interfaces. They can
also mount the file system locally using FUSE (a popular Linux file system soft-
ware that helps in mounting file systems, for more details see fuse.sourceforge.net).
Alternatively, for client systems that do not support FUSE, a user space client called
Booster is available as a shared object.

FIGURE 9.9

Gluster management console.

Storage Virtualization 367

Figure 9.10 shows an overview of the architecture of Gluster. GlusterFS uses the
concept of a storage brick consisting of a server that is attached to storage directly
(DAS) or through a SAN. Local file systems (ext3, ext4) are created on this storage.

Gluster employs a mechanism called translators to implement the file system
capabilities. Translators are programs (like filters) inserted between the actual con-
tent of a file and the user accessing the file as a basic file system interface [28,
29]. Each translator implements a particular feature of GlusterFS. Translators can
be loaded both in client and server side appropriately to improve or achieve new
functionalities. Examples of translators that are deployed in Gluster are Symbolic
Links (which implements symbolic links), performance translators, clustering
translators and scheduling translators. In a symbolic link translator, an access to
the symbolic link starts the translator, which would forward the request to the file-
system that contains the file the link points to.

Translators also allow optimization control at a much finer level as well. A Read
Ahead translator, for example, employs caching logic, which performs data read
pre-fetches enabling read performance. A Write Behind translator delays the write
operation and allows the client to process the next operation. Subsequently, it aggre-
gates multiple smaller write operations into fewer large write operations and hence
improves write performance. Clustering translators support GlusterFS to effectively
use multiple servers for clustered storage. A unify translator aggregates
sub-volumes from the storage and presents them as a single volume [30]. It allows a

Client

Bricks

Cluster

GlusterFS client

Performance translator. Read ahead

Clustering translator. Replicate

Fuse module in kernel

Translator. Read ahead

Gig ethernet

SAN: Fibre Channel

Server

Brick 1

Direct attached
Storage

Brick 2

Storage array

Brick n

Storage array

Server Server

FIGURE 9.10

Architecture of Gluster.

368 CHAPTER 9 Related Technologies

particular file to reside on one of the sub-volumes in the storage cluster and
employs a “scheduler” to determine where a file resides.

Gluster performs very good load balancing of operations using the I/O Scheduler
translators [31]. Adaptive Least Usage (ALU) is one such translator wherein the
GlusterFS balances load across volumes. Further, the optimized load is defined by
the following “sub-balancers” and that enables one to fine-tune the load balancing
feature as per the application-need:

• Disk-usage: Free and used disk space on the volume
• Read-usage: Quantum of read operations performed from this volume
• Write-usage: Quantum of write operations performed done from this volume
• Open-files-usage: Number of open files from this volume
• Disk-speed-usage: The disk’s spinning speed

GlusterFS also supports file replication with the Automatic File Replication
(AFR) translator, which keeps identical copies of a file/directory on all its sub-
volumes [32, 33]. Here, all file system operations (I/O and control) are performed
on all its sub-volumes. Operations that do not perform file or directory modifica-
tions are sent to all the sub-volumes and the first successful reply is passed back
to the application. However, read operations accessing data from a file AFR are
handled by routing all reads from a particular file to a specific server. Consistency
across sub-volumes is achieved by a lock whenever a modification is being made
to file/directory or directory. A change log is maintained that keeps track of the
data or metadata changes performed.

Self healing is another important feature supported by Gluster. In situations of
data inconsistency across different copies of a file, the change log mentioned ear-
lier is used to determine the correct copy version. The self-healing feature works
as follows. On a directory access, the correct version is replicated on all sub-
volumes, by deleting/creating necessary entries. On a file access, if the file is
missing, it is created on all sub-volumes, and metadata is changed if different
from the correct version. Data updates are performed periodically if the change
log indicates mismatch.

Gluster is therefore a potential technology that can be used to provide scalable,
available and highly performing storage hardware for a cloud storage infrastruc-
ture. So, it is usually referred to as a cloud file system and has been used with
RackSpace cloud-hosting solution. Further information about Gluster can be found
in the Gluster community page [34].

Block Virtualization
The other type of storage in data centers is block storage such as that found in a
Fibre Channel, iSCSI or direct-attached storage. Block storage has very good perfor-
mance, and is used widely for database transaction processes, while having worse
manageability [35]. However, the performance of file level and block level storage
is close enough that many enterprise customers use file storage for many of their
needs. Providing virtualized block storage is critical for IaaS cloud vendors.

Storage Virtualization 369

Block-level virtualization technique virtualizes multiple physical disks and pre-
sents the same as a single logical disk. The data blocks are mapped to one or more
physical disks sub-systems. These block addresses may reside on multiple storage
sub-systems, appearing however as a single storage (logical) storage device.

Block level storage virtualization can be performed at three levels:

a. Host-Based
b. Storage Level
c. Network level

A well-known traditional technique for host-based storage virtualization is the
use of a Logical Volume Manager (LVM), a virtualization layer that supports
allocation and management of disk space for file systems or raw data with cap-
abilities to dynamically shrink or increase physical volumes, or combine small
chunks of unused space from multiple disks or create a logical volume that is
greater than the size of the physical disk, all these transparently.

Storage-device level virtualization creates Virtual Volumes over the physical
storage space of the specific storage subsystem. Storage disk arrays provide this
form of virtualization using RAID techniques. Array controllers create Logical
UNits (LUNs) spanning across multiple disks in the array in RAID Groups. Some
disk arrays also virtualize third-party external storage devices attached to the
array. This technique is generally host-agnostic and has low latency since the vir-
tualization is a part of the storage device itself and in the firmware of the device.

As the two techniques are well covered in traditional text books, the focus in
the following is the newer area of network-based virtualizations.

Network-Based Virtualization
This is the most commonly implemented form of scalable virtualization. In this
approach, the virtualization functionality is implemented within the network con-
necting hosts and storage, say a Fibre Channel Storage Area Network (SAN). There
are broadly two categories based on where the virtualization functions are imple-
mented: either in switches (routers) or in appliances (servers). In a switch-based
network virtualization, the actual virtualization occurs in an intelligent switch in the
fabric and the functionality is achieved when it works in conjunction with a meta-
data manager in the network. On the other hand, in an appliance-based approach,
the I/O flows through an appliance that controls the virtualization layer.

Both switch-based and appliance-based models can provide the same services:
disk management, metadata lookup, data migration and replication. In appliance-
based implementation, the appliance, a dedicated hardware device, sits in between
the host and the storage, and I/O requests are targeted at the appliance. In the
switch-based model, intelligent switches also sit in between the host and the sto-
rage, but try to perform their function transparently using techniques to snoop on
incoming I/O requests and performing I/O redirection. Services requiring fast
updates of data and metadata may not perform well in a switch-based solution, as
it is difficult to ensure atomic updates to metadata.

370 CHAPTER 9 Related Technologies

Further, there are broadly two variations of an appliance-based implementation.
The appliance can either be in-band or out-of-band. In in-band, all I/O requests
and their data pass through the virtualization device and the clients do not interact
with the storage device at all. All I/O is performed by the appliance on behalf of
the clients. In out-of-band usage, the appliance only comes in between for meta-
data management (control path), while the data (I/O) path is directly from the cli-
ent to each host (with agents on each host/client). This mode is somewhat similar
to Lustre’s mode of having separate metadata servers (but for block). The follow-
ing describes one example of each of these different virtualization techniques.

HP SAN Virtualization Services Platform
HP StorageWorks SAN Virtualization Services Platform (HP SVSP) is a switch-
based storage virtualization solution wherein an intelligent FC switch runs virtualiza-
tion functionality using specialized ASICs (Application Specific Integrated Circuits).
Translation of logical to physical addresses and the redirection of I/O is performed
in these switches. An out of band metadata manager (an appliance) manages the
control operations. This is called a split-path architecture.

In this split-path architecture, the intelligent switch splits the data and the control
operations in the network. The intelligent switch manages the I/O data path while the
metadata control operations are routed to the out of band manager, which could be an
appliance. The need for host agents which direct virtual I/O requests to the correct
physical storage is thereby eliminated, since this is done transparently in the switch.
The appliance performing metadata management has the physical storage visibility
and allocates virtual volume mapping. Virtual volumes are presented to hosts as disk
drives. On a host I/O to the virtual volume, the virtual volume’s logical address is
mapped to a physical address, and I/O is sent directly to the storage devices.

Figure 9.11 shows the high-level architecture of HP SVSP. It mainly includes
Data Path Modules (or DPMs), which are intelligent switches, and Virtualization Ser-
ver Managers (or VSMs), which are appliances. The virtualization functionality is
performed both by the DPMs and VSMs. The DPM performs real-time parsing of FC
frames by examining packets. The DPM gets its virtual-to-physical storage mappings
from the VSM. VSM performs data management operations including functionality
such as replication and backup. The VSM and DPM coordinate for all management
and control path operations without interference in the data path between servers and
storage arrays, hence supporting high I/O throughput to storage arrays.

The solution includes replication support as well as snapshots, mirroring and
non-disruptive data migration. Also, since I/O traffic flows directly through the
ASIC, the latency problem can be made imperceptible to applications without the
need to resort to caching.

IBM SAN Volume Controller
IBM SAN Volume Controller (SVC) is a storage virtualization appliance-based
solution in a Fibre Channel storage area network. The appliance is positioned in-
band in the I/O path of the network, thereby separating the fabric in two sections.

Storage Virtualization 371

One is the section of the appliance facing the host on one side of the network
where it appears as a storage device. Second is the section of the appliance facing
the storage arrays where it appears as an Initiator (Host). Such an appliance imple-
mentation in a network has to examine every data packet, resulting in additional
I/O packet processing and hence additional latency. This overhead is overcome by
using a cache in the appliance. Cache usage enables write-back acknowledgements
to be sent to the host even prior to the data actually having been written to the
physical storage. The appliance manages cache synchronization with physical
storage consistency and cache coherency.

The virtualization layer of SVC supports block-level aggregation for storage
devices in the SAN and volume management by mapping physical storage into
logical volumes presented to servers in the SAN. The back-end physical storage is
hidden from direct visibility to servers through zoning in the SAN.

Figure 9.12 shows the high-level architecture of this IBM solution. A node is
the virtualization layer appliance supporting caching and replication services.
These nodes in pairs are called I/O groups. Multiple I/O groups form a cluster. A
virtual volume or a VDisk is presented to a host server by one I/O Group of this
cluster. All I/O to a VDisk from a server are routed to one specific I/O Group in

Host 1

Control path
and volume

management:
VSM

Intelligent switches
in I/O path: DPMs

SAN

Control I/O:
Inquiry/TUR/...

I/O

Host 2 Host 3

I/O frame processing
at wire speed using
ASICs; low latency

Storage device 1 Storage device 2 Storage device 3

FIGURE 9.11

HP SAN virtualization platform architecture.

372 CHAPTER 9 Related Technologies

the cluster and processed by the same node of the I/O Group, called a preferred
node. On a node failure, the surviving node takes over the preferred node tasks,
thereby facilitating high availability.

Servers can be mapped to more than one I/O Group of an SVC cluster for acces-
sing VDisks from separate I/O Groups. VDisks can be moved between I/O Groups
for load distribution. The physical storage seen by the clusters is referred to as
managed disks or MDisks. A Managed Disk Group (MDG) is a collection of
MDisks. A VDisk seen by a server is capacity provisioned out of one or more MDGs.
An MDisk comprises a number of extents wherein the size of the extent is user con-
trollable. So, unlike IBM SVC, HP SVSN is a purely appliance-based solution.

So far in this chapter, technologies were described that can be used by an IaaS
vendor to set up scalable, elastic hardware resources used to serve a cloud user.
The remaining sections give a concise description of related technologies that are
sometimes confused with cloud computing and explain the similarities and differ-
ences between cloud computing and the specific technology.

Storage
Zones

10 group 1

Node
1

Node
2

10 group 2

Node
3

Node
4

SAN

SVC: Virtualization layer;
Cache for performance;

Replication services

Host 1 Host 2 Host 3

Storage device 1 Storage device 2 Storage device 3

Host Zones

FIGURE 9.12

Architecture of IBM SVC.

Storage Virtualization 373

GRID COMPUTING
Cloud computing is frequently compared to grid computing. Grid computing also
has the same intent of abstracting out computing resources to enable utility mod-
els and was proposed at least a decade earlier than cloud computing, and there are
many aspects of grid computing that have formed the basis of the requirements
placed on a cloud. Having said that, there are also very specific differences
between a grid computing infrastructure and the features one should expect from
a cloud computing infrastructure. This can be seen by first describing some funda-
mental aspects of grid computing and then comparing them with those of cloud
computing.

Overview of Grid Computing
The vision of grid computing is to enable computing to be delivered as a utility.
This vision is most often presented with an analogy to electrical power grids,
from which it derives the name “grid”. So, grid computing was meant to be used
by individual users who gain access to computing devices without knowing where
the resource is located or what hardware it is running, and so on. In this sense,
it is pretty similar to cloud computing. However, just as electrical power grids can
derive power from multiple power generators and deliver the power as needed by
the consumer, the key emphasis of grid computing was to enable sharing of com-
puting resources or forming a pool of shared resources that can then be delivered
to users. So, most of the initial technological focus of grid computing was limited
to enabling shared use of resources with common protocols for access, Also, since
the key takers of this fascinating vision were educational institutions, a particular
emphasis was given to handle heterogeneous infrastructure, which was typical of
a university datacenter. From a technical perspective, a software-only solution was
proposed (Globus) and implemented on this heterogeneous infrastructure to enable
use of these resources for higher computing needs. Once reasonably successful
within universities, grid computing faced a serious issue when it came to sharing
resources across commercial institutions. Establishing trust and security models
between infrastructure resources pooled from two different administrative domains
became even more important.

Three Fundamental Characteristics of a Grid
In 2002, Ian Foster from Argonne National Laboratories proposed a three-point
checklist for determining whether a system is a grid or not. Ian Foster along with
Steve Tucker in the popular article “Anatomy of Grid” defined grid computing as
“coordinated resource sharing and problem solving in dynamic, multi-institutional
virtual organizations.”

So, the key concept emphasized was the ability to negotiate resource sharing
agreements among a set of participating parties – where sharing did not really

374 CHAPTER 9 Related Technologies

mean “exchange” but direct access to computing resources either in a collabora-
tive resource sharing or negotiated resource brokering strategies. Further, this shar-
ing was highly controlled with resource providers and consumers grouped into
virtual organizations primarily based on sharing conditions.

The following is the precise simple checklist that was proposed: A grid is a
system that

1. Co-ordinates resources that are not subject to centralized control
2. Using standard, open, general purpose protocols and interfaces
3. To deliver nontrivial quality of service

The first criterion states that a grid should integrate computing resources from
different control domains (say servers from computer centers of different universi-
ties, each center having a different system administrator in each university). Tech-
nologically, this requirement addresses the issues of cross-domain security, policy
management, and membership. Use of a common standard for authentication,
authorization, resource discovery and resource access becomes a necessity in such
cases and hence the second criterion. Finally, in an effort towards commercializing
the usage of shared resources, it is important to support various quality-of-service
parameters such as response time, throughput, availability or even co-allocation of
resources to meet user demands.

A Closer Look at Grid Technologies
First of all, grid computing defines a notion of a virtual organization to enable
flexible, co-ordinated, secure resource sharing among participating entities. A vir-
tual organization (VO) is basically a dynamic collection of individuals or institu-
tions from multiple administrative domains. A VO forms a basic unit for enabling
access to shared resources with specific resource-sharing policies applicable for
users from a particular VO (Figure 9.13). The key technical problem addressed by
grid technologies is to enable resource sharing among mutually distrustful partici-
pants of a VO who may have varying degrees of prior relationship (perhaps none
at all) and enable them to solve a common task.

An extensible and open Grid Architecture shown in Figure 9.14 was defined
by Ian Forster in The Anatomy of the Grid [36] in which protocols, services,
APIs, and SDKs are categorized according to their roles in enabling resource shar-
ing. The Grid Fabric layer provides the resources to which shared access is
mediated by grid protocols. These can be computational resources, storage sys-
tems, catalogs, network resources or even a logical entity, such as a distributed
file system, computer cluster, or distributed computer pool. A well-known toolkit
for the fabric layer is the Globus Toolkit that provides local resource specific
operations on existing computing elements [37]. The Connectivity layer includes the
core protocols for communication and authentication for inter-node communication.
The key aspects of these protocols include single sign on, delegation, user-based

Grid Computing 375

Virtual
organization
VO1

Virtual
organization
VO2

Virtual
organization
VO3

FIGURE 9.13

Virtual organizations.

Application layer

Collective layer

Resource services
Protocols:
GRAM, GridFTP,
GRIP, GRIS, GIIS

IP, DNS,
Grid security infrastructure

Individual computer, Condor pools, file
systems, archives, metadata catalogs,
networks, sensors, etc.

Connectivity API’s

Fabric layer

FIGURE 9.14

Layered grid architecture.

376 CHAPTER 9 Related Technologies

trust relationships and integration with local security solutions. One important pro-
tocol whose reference implementation is available in Globus is the public key based
GSI protocol (Grid Security Infrastructure), which extends TLS (Transport
Layer Security) to address these issues. The resource layer includes APIs and SDKs
for secure negotiation, monitoring, control, accounting, and payment for operations
on a single shared resource. An example protocol at this layer is the GRAM (Grid
Resource Access and Management) protocol used for allocation, monitoring and
control of computational resources; and the GRIP (Grid Resource Information
Protocol) and GridFTP (File Transfer Protocol), which are extensions of LDAP
and FTP protocols. The Collective Layer implements a variety of sharing behaviors
with directory services, brokering services, programming systems community
accounting and authorization services and even collaborative services. One such
service is the GIIS (Grid Information Index Servers) that supports arbitrary
views on resource subsets, which can be used with LDAP and the DUROC library
that supports resource co-allocation. More details of these services can be found at
the Globus Technical Papers web site [38].

Current implementations of Open Grid architecture follow a Web Services-based
interface enabling interoperability between different implementations of the proto-
cols. Since web services by definition are stateless, the Grid community (Globus
alliance) introduced a set of enhanced specifications called Web Services Resource
Framework (WSRF) that web services could implement to become stateful. Open
Grid Services Architecture now defines a service-oriented grid computing environ-
ment, which not only provides standardized interfaces, but also removes the need
for layering in the architecture and defines a concept of virtual domains, allowing
dynamic grouping of resources as well. Interested readers can look up the complete
OGSA specification at http://www.ogf.org/documents/GFD.80.pdf

The standard bodies involved in evolving the grid protocols were (a) The Glo-
bal Grid Forum, (GGF); (b) Organization for the Advancement of Structured
Information Standards (OASIS); (c) World Wide Web Consortium (W3C); (d)
Distributed Management Task Force (DMTF); and (e) Web Services Interoperabil-
ity Organization (WS-I).

A reference implementation of these protocols is available in a popular open
source software toolkit called Globus toolkit (GT), which was developed by the
Globus alliance, a community of organizations and individuals developing funda-
mental technologies behind the grid [39–41]. The nice thing about this software is
that it enables existing resources to easily join a grid pool by enabling the
required protocols locally. Figure 9.15 shows a high-level block diagram of the
components provided in GT5. To get started on setting up a grid, one just needs
to download and install GT on any of the supported platforms. To create a
resource pool, it is a good idea to install a resource scheduler such as the Condor
cluster scheduler and configure that as a grid gateway for resource allocation.
After some initial security configurations (obtaining signed certificates and setting
up access rights), the grid can be up and running!

Grid Computing 377

http://www.ogf.org/documents/GFD.80.pdf

NOTE
Some popular grid projects
• Grid Physics Network GriPhyN driven by University of Chicago,
• Particle Physics Data Grid (PPDG), a collaboration project now merged with iVDGL,
• EU DataGrid now part of EGEE (Enabling Grids For E-sciencE),
• NASA’s Information Power Grid,
• DOE Science Grid and DISCOM Grid that link systems at DOE laboratories, and
• TeraGrid that links major U.S. academic sites.

Comparing Grid and Cloud
From the earlier description of grid computing, it can be seen that it has many simila-
rities with cloud computing. However, there are differences as well, notably the fact
that grid computing emphasizes the pooling of resources from multiple organizations,
and that it mostly targets high-performance computing (HPC) applications. This sec-
tion compares the two technologies in more detail using different parameters. Readers
are referred to studies made in 2008 [42, 43] for a detailed comparison of grid and
cloud computing from a practical implementation perspective.

Globus toolkit version 5 (GT5)

Security

GSIC

Data management

Execution
management

Libraries

Common
runtime

GridFTP

Replica
location
(RLS)

GRAM5

GSI-Open
SSH

MyProxy

FIGURE 9.15

Globus toolkit.

378 CHAPTER 9 Related Technologies

Similarities between Grid and Cloud
The key similarity between cloud computing and grid computing is the intent of
providing resources that can scale and go beyond what a user personally owns. In
grid computing, the scalability is provided by increasing the utilization of
resources and is achieved by load balancing across shared resources. On the other
hand, scalability in a cloud service is achieved by using sophisticated auto-re-
provisioning techniques or simply by provisioning more than what the user asked
for (always catering to peak loads).

The need for multitasking and multi-tenancy is also common between the two.
Multiple users can simultaneously access the same resources and run multiple
instances of applications. However, since cloud computing typically involves a
more commercial agreement between the vendor and the user, the system has a
more rigorous need for multi-tenancy at every aspect of the stack – infrastructure,
platform as well as application.

Since both the forms of computing require use of resources from someone else,
either the cloud vendor or collaborator in the grid case, strict service-level agreements
need to be in place to ensure fair play, especially when the resource usage comes
with certain commercial agreements. Similarly, many grid systems provide support
for application failover (Condor) and this is particularly useful for long running HPC
applications to restart from the nearest failure point. Fault tolerance of applications on
a cloud system is, in fact, critical and the vendor needs to ensure service availability
through appropriate failover mechanisms.

Differences between Grid and Cloud
Given the detailed discussion of cloud computing in the earlier chapters and the short
introduction to grid computing, it will be clear that there are differences between the
computing models. A grid basically links disparate resources from multiple organiza-
tions to form one large infrastructure pool. Grid computing allocates compute and
storage resources to a user from a shared pool of assets that can even have a contri-
bution from the user’s own organization! The key focus is in harnessing unused
resources and typically these resources are heterogeneous in nature. On the other
hand, cloud infrastructure will usually consist of homogeneous resources and is pro-
vided by a single vendor to a consumer or user (different from the vendor).

The typical way of using a large number of resources on a grid is through
advance reservation. In fact, there were many advance reservation algorithms (Grid-
ARS) and APIs (GridEngine) [44] proposed around 2005, to enable optimal resource
utilization in grid systems. On the contrary, no reservation is needed in a cloud infra-
structure. On-demand resource provisioning is one of the key benefits of cloud com-
puting. The resources are supposed to magically expand when the demand increases.
Some of the techniques and APIs provided to enable this elasticity in computing have
been described earlier, and massive scale up of resources on demand is a key aspect
of cloud computing, which removes the need for advance resource reservations.

Another aspect that is different between the two models is the ownership of
resources. Since resources from multiple organizations are pooled, the machines

Grid Computing 379

in a grid pool will typically come from different administrative domains.
So, protocols to manage authenticated access in such a virtual organization
become important. Resources on a cloud, however, are owned by a single cloud
vendor and any joint partnerships are handled at a business level and no technol-
ogy components for the same are used.

Further, in a cloud environment, consumers use what they need and pay only
for what they used (even in a private cloud, different departments in a business
may pay for their resource usage) – while payment is not an aspect studied in the
grid context. Users may also pay implicitly by contributing their resources to a
shared pool for other’s use. So, while fine-grained usage monitoring becomes
important on a cloud, it is not of much value in a grid system. There are also dif-
ferences in the target user segment that the two computing models address. The
target segment for cloud computing is established industry, academia and also
startups or new ventures. And they are hosted by commercial companies like
Amazon and HP, who charge users for what they use. On the other hand, the tar-
get population for a grid are primarily researchers and technology collaborators
(groups of institutions) that are interested in sharing their individually owned
resources among each other.

Grid computing is a software-only solution, with tools (Globus toolkit)
deployed to enable grid protocols over existing systems. A cloud-based solution,
on the other hand, involves technologies at multiple layers of the stack, leading to
different cloud models (IaaS, PaaS and SaaS). Also, grid applications are parallel,
distributed, message-passing applications that either execute certain modules on
specialized computing resources located in a different geography, or execute a
data parallel application loosely coupled and distributed on a number of similar
compute and storage resources. Grids are therefore suited for HPC applications
for large-scale computation where large data sets are crunched by parallelizable
compute intensive applications. A cloud application, on the other hand, need not
be a distributed application. It needs to be architected in a way to scale based on
demand. So apart from using distributed machines, it can also use a scale-out
technique on clusters or parallel threads on multiple compute nodes with a shared
memory, for example. Cloud computing is also used to host web services that
tend to be long-serving daemon-like services that run for a long time, as opposed
to grid applications that tend to be more compute intensive and batch-like, need-
ing a lot of resources for a limited amount of time (and this estimated completion
time is used for prior reservation of the resources). Similarly, the unit of storage
used by a cloud consumer can vary from 1 byte to petabytes, where a data grid is
particularly useful for large-scale data storage and manipulation.

Since cloud applications execute on a web browser, they are much easier to use
without any client software installed; whereas grid applications tend to be distribu-
ted and need specific types of heterogeneous resources requiring appropriate grid
schedulers for installation. Though the consumers here too can use a simple
browser-like interface, the results of grid applications tend to large amounts of data
that require sophisticated visualization tools to consume. The key aspect of cloud is

380 CHAPTER 9 Related Technologies

abstraction of complex technologies – be it hardware, software or applications – and
delivering it in the most simplistic fashion. The main advantage of clouds over grid
is simplicity of usage and that of grids over cloud is efficient use of resources.

NOTE
Comparing Grid and Cloud Computing
A very nice table comparing the similarities and differences between grid and cloud has
been published by The Israeli Association of Grid Technologies (IGT) and is available at
http://www.grid.org.il/_Uploads/dbsAttachedFiles/Comparing-Cloud-Grid.pdf

Combining Grid Computing with Cloud Computing
Can we combine the two technologies? Though in principle, it is possible to deli-
ver cloud computing services over a resource pool of a grid system, the business
viability of harnessing such resources from different organizations to collectively
deliver as a joint cloud infrastructure vendor seems less likely. Similarly, it is pos-
sible to think of a cloud infrastructure participating as one of the nodes in a
resource pool enabling shared access to cloud-hosted paid infrastructure. Again,
linking up the pay-per-use model with sharing is tricky. While the technologies
underlying both grid computing and cloud computing may converge or become
interoperable in the future, differences in the commercial aspects will remain, spe-
cifically around type of usage and access patterns.

OTHER CLOUD-RELATED TECHNOLOGIES
The following are other technologies that are similar to cloud computing but, like
grid computing, are distinct technologies.

Distributed Computing
Distributed computing is a much broader technology that has been around for
more than three decades now. Simply stated, distributed computing is computing
over distributed autonomous computers that communicate only over a network
(Figure 9.16). Distributed computing systems are usually treated differently from
parallel computing systems or shared-memory systems, where multiple computers
share a common memory pool that is used for communication between the proces-
sors. Distributed memory systems use multiple computers to solve a common
problem, with computation distributed among the connected computers (nodes)
and using message-passing to communicate between the nodes. For example, grid
computing, studied in the previous section, is a form of distributed computing
where the nodes may belong to different administrative domains. Another example
is the network-based storage virtualization solution described in an earlier section

Other Cloud-Related Technologies 381

http://www.grid.org.il/_Uploads/dbsAttachedFiles/Comparing-Cloud-Grid.pdf

in this chapter, which used distributed computing between data and metadata
servers.

Developing applications for distributed memory machines is much more
involved than traditional sequential machines. Sometimes new algorithms need to
be developed to solve even a well-known problem (sorting huge sequences of
numbers). In order to ease the burden on programmers, parallelizing compilers
that convert sequential programs written for traditional computers to distributed
message programs exist, particularly for distributed SMP (symmetric multiproces-
sor) clusters. Distributed computing, however, can include heterogeneous compu-
tations where some nodes may perform a lot more computation, some perform
very little computation and a few others may perform specialized functionality
(like processing visual graphics). One of the main advantages of using distributed
computing (versus supercomputers like Cray where thousands of processors are
housed in a rack and communicate through shared memory) is that efficient scal-
able programs can be designed so that independent processes are scheduled on
different nodes and they communicate only occasionally to exchange results – as
opposed to working out of a shared memory with multiple simultaneous accesses
to a common memory.

With that description, it is probably obvious that cloud computing is also a
specialized form of distributed computing, where distributed SaaS applications uti-
lize thin clients (such as browsers) which offload computation to cloud-hosted ser-
vers (and services). Additionally, cloud-computing vendors providing (IaaS and
PaaS) solutions may internally use distributed computing to provide highly scal-
able cost-effective infrastructure and platform.

Local
memory

Processor

Local
memory

Processor

Local
memory

Communica
tion

channel

Processor

Processing
node

Local
memory

Processor

Local
memory

Processor

FIGURE 9.16

A distributed computing system.

382 CHAPTER 9 Related Technologies

Utility Computing
Utility computing has been a vision of many for a long time. John McCarthy,
referring to computers of the future, said that computing will be organized as a
public utility like the telephone system, and that was way back in the 1960s [45]!
By definition, utility computing is packaging of computing resources (computation,
storage, applications) as a metered service similar to a traditional public utility
(such as electricity, water, natural gas, or the telephone network). The primary
advantage of this model was low or no initial cost to acquire computer resources;
instead, computational resources are essentially rented. Early efforts towards deli-
vering utility computing was from HP, where it launched InsynQ to provide on-
demand desktop hosting services, and later on launched a product called Utility
Data Center (UDC), which enabled a user to carve out required infrastructure from
a fixed set of resource pools and create isolated personal virtual data centers. Simi-
larly, in the 1990s Sun Cloud and Polyserve Clustered File System were efforts to
offer storage as a service.

It can be seen that cloud computing has attempted to make the complete com-
puting stack – the infrastructure, platform and applications – as a service, deliver-
ing each of them as a metered computing resource with a pay per use model.
Cloud computing is the most recent technology innovation which has made utility
computing a reality!

Autonomic Computing
Autonomic computing, proposed by Paul Horn of IBM in 2001, shared the vision of
making all computing systems manage themselves automatically. It refers to self-
managing characteristics of distributed computing resources, which recognize and
understand changes in the system, take appropriate corrective actions completely
automatically, with close to zero human intervention. The key benefit is drastic reduc-
tion in the intrinsic complexity of computing systems and making computing more
intuitive and easy to use by operators and users. The vision is to make computing
systems self-configuring, self-optimizing, and self-protecting – as well as self-healing.

Independently, several similar efforts arose towards simplified IT management,
such as ITIL (IT Infrastructure library) methodologies and ITSM (IT service man-
agement) technologies, WSDM (Web Services distributed management), and the
like. Several research groups are still working on self-healing systems and policy
management systems that can handle sophisticated service level agreements to
enable better automated decision making. We have seen some good success with
many products now also focusing on easy manageability as one of the important
goals.

Given that the objective of cloud computing is to simplify computing systems,
provide elasticity in computing and high availability of systems, any new innova-
tion towards making machines more autonomic will directly feed into cloud infra-
structures. Virtualization technologies, described earlier, provide the right level of
abstractions to dynamically handle changes to the hardware resources and cater to

Other Cloud-Related Technologies 383

on-demand elasticity. Simplified manageability solutions that are currently
provided by cloud vendors were described in Chapter 8 with specific case studies.
So, it may not be wrong to say that cloud computing shares the vision of
autonomic computing and more.

Application Service Providers
The trend of hosting applications as a service for others to use started as early as
the 1990s. The vendors who would host such applications accessible by their cli-
ents using just web browsers were called application service providers. With this
definition, it does look very similar to SaaS, and SaaS vendors could be called
ASPs. However, there were several limitations when any off-the-shelf application
with a browser-based interface was hosted as a service [46]. Many of these appli-
cations did not have the capability to handle multi-tenancy, customized usage for
every user, and also did not have automated deployment and elasticity to scale on
demand. Nevertheless, it is safe to say that the ASP model was probably a fore-
runner of the SaaS model of cloud computing.

SUMMARY

This chapter has looked at some important technologies that have influenced the
development of cloud computing. Some of the techniques used for storage and
server virtualization were studied in detail. How CPU, memory and I/O virtualiza-
tion can be performed using the trap and emulate method, together with its limita-
tions and approaches to overcome the same with software extensions and
hardware assists were described. These described techniques were studied in the
context of two popular virtualization software packages, namely VMware and
Xen. The different techniques used to virtualize storage were studied, where phy-
sical storage sub-systems were abstracted from the user’s application and pre-
sented as logical entities, hiding the underlying complexity of the storage
subsystems. Techniques and architectures used to provide both file-level as well
as block-level virtualized access were discussed through appropriate case studies.
It could be seen that in order to provide scalable storage, sophisticated techniques
to efficiently manage file system metadata become critical, with case studies of
Lustre and Gluster. The chapter also looked at architectures for network-based
block virtualization where the abstraction could be provided either by having
smart routers or on specialized appliances, through case studies from popular
SAN solutions from HP and IBM. Virtualization is a very important and funda-
mental technology that enables hardware resources to expand or contract in an
application transparent manner – and as seen in Chapter 6, virtualization enables
some of the key characteristics of a cloud infrastructure. Understanding and appre-
ciating the complexities in implementing these techniques enables a developer to
look at cloud infrastructure as a holistic solution.

384 CHAPTER 9 Related Technologies

Other related technologies that are often mistaken to be equivalent to cloud
computing were discussed – particularly grid computing which shares the same
broad vision of cloud computing – that is, to enable computing as a utility.
However, as seen from the description, grid computing is more focused on
enabling resource sharing among a group of collaborating institutions, which
may or may not have a financial agreement (forming a virtual organization),
which is a clear contrast with the business models of the cloud. From a technol-
ogy standpoint, grid computing also provides a form of virtualization of
resources, but not at the level of usage of physical resources, rather only to vir-
tualize or normalize the protocol to access and manage resources. The heteroge-
neity in the resources is visible to the user and, in fact, leveraging these
heterogeneous computing resources without owning it all is one of the benefits
of grid computing. Finally, we observed and related some additional terminolo-
gies like utility computing, autonomic computing, distributed computing, etc., to
cloud computing. By this chapter, you should now be able to clearly articulate
the key values of cloud computing and compare and contrast those with the
other related technologies.

References
[1] Smith JE, Nair R. The architecture of virtual machines. IEEE Comput 2005; 38(5):

32–38.
[2] Meyer RA, Seawright LH. A virtual machine time-sharing system. IBM Syst J 1970;

9(3):199–218.
[3] Goldberg RP. Survey of virtual machine research. IEEE Comput 7(6):34–45.
[4] Bugnion E, Devine S, Govil K, Rosenblum M. Disco: running commodity operating

systems on scalable multiprocessors. ACM Trans Comput Syst 1997; 15(4):412–447.
[5] Abramson D, Jackson J, Muthrasanallur S, et al. Intel virtualization technology for

directed I/O. Intel Technol J 2006; 10(3):179–192.
[6] Intel Architecture Software Developer’s Manual Volume 3: System Programming.
[7] Popek GJ, Goldberg RP. Formal requirements for virtualizable third generation

architectures. ACM Commun 1974; 17(7):412–421.
[8] Adams K, Agesen O. A comparison of software and hardware techniques for x86

virtualization, ASPLOS’06, October 21–25, San Jose, CA.
[9] Uhlig R, Neiger G, Rodgers D, Santoni A.L., Martins F.C.M., Anderson A.V., et al.

Intel Virtualization Technology. IEEE Comput 2005, 38(5):48–56.
[10] Intel® 64, IA-32 Architectures Software Developer’s Manual, Volume 3B: System

Programming Guide, Part 2.
[11] Understanding Full Virtualization, Paravirtualization, and Hardware Assist, WP-028-

PRO-01-01, VMware Inc. http://www.vmware.com/files/pdf/VMware_paravirtualization.
pdf; 2007 [accessed 13.10.11]

[12] The Architecture of VMware ESX Server 3i, Charu Chaubal, Revision: 20071113
WP-030-PRD-01-01, VMware Inc. http://www.vmware.com/files/pdf/ESXServer3
i_architecture.pdf; 2007 [accessed 13.10.11]

[13] Filter Driver Development Guide, download.microsoft.com/download/e/b/../filterdriver
developerguide.doc [accessed 13.10.11]

References 385

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.vmware.com/files/pdf/ESXServer3i_architecture.pdf
http://www.vmware.com/files/pdf/ESXServer3i_architecture.pdf
http://www.download.microsoft.com/download/e/b/../filterdriverdeveloperguide.doc
http://www.download.microsoft.com/download/e/b/../filterdriverdeveloperguide.doc

[14] Bach, M. The Design of the UNIX Operating System, Prentice Hall, June 6, 1986,
978–0132017992

[15] Jacob DR, Lorch JR, Anderson TE. A comparison of file system workloads. In:
Proceedings of the USENIX annual technical conference; 2000, Usenix Association,
Berkeley, CA. p. 41–54.

[16] Panasas Architecture. http://www.panasas.com/products/architecture.php [accessed
13.10.11].

[17] Panasas® Storage for Petascale Systems. http://performance.panasas.com/wp-panasas
storageforpetascalesystems-jan10.html [accessed 13.10.11].

[18] Scalable Performance of the Panasas Parallel File System. http://performance.panasas.
com/wp-scalableperformanceofthepanasasparallelfilesystem-2008.html [accessed
13.10.11].

[19] HP Ibrix reference: HP and HPC Storage. http://www.hpcadvisorycouncil.com/events/
switzerland_workshop/pdf/Presentations/Day%203/3_HP.pdf [accessed 13.10.11].

[20] HP Ibrix reference: HP StorageWorks X9000 File Serving Software User Guide
[21] Lustre architecture. http://wiki.lustre.org/lid/subsystem-map/subsystem-map.html; 2010

[accessed 13.10.11]
[22] A Deep Dive into Lustre Recovery Mechanisms. https://docs.google.com/viewer?

url=http://wiki.lustre.org/images/0/00/A_Deep_Dive_into_Lustre_Recovery_Mechanisms.
pdf, 2011 [accessed 13.10.11]

[23] Wang F, Oral S, Shipman G, Drokin O, Wang T, Huang I. Understanding Lustre file-
system internals. Oak Ridge National Laboratory; 2009.

[24] Lustre Center of Excellence at Oak Ridge National Laboratory. http://wiki.lustre.org/index.
php/Lustre_Center_of_Excellence_at_Oak_Ridge_National_Laboratory#Lustre_Scal
ability_Workshop_-_Feb_10_.26_11.2C_2009.2C_ORNL [accessed 13.10.11]

[25] Lustre Community Events, Conferences and Meetings. http://wiki.lustre.org/index.php/
Lustre_Community_Events,_Conferences_and_Meetings [accessed 13.10.11].

[26] GlusterFS 2.0.6. http://www.gluster.com/community/documentation/index.php/Gluster
FS_2.0.6 [accessed 13.10.11].

[27] Elastic Hash Algorithm. http://ftp.gluster.com/pub/gluster/documentation/Gluster_
Architecture.pdf [accessed 13.10.11].

[28] GNU Hurd translator. http://www.gnu.org/software/hurd/hurd/translator.html [accessed
13.10.11].

[29] Gluster translators. http://www.gluster.com/community/documentation/index.php/
Translators_v2.0 [accessed 13.10.11].

[30] Understanding Unify Translator. http://www.gluster.com/community/documentation/
index.php/Understanding_Unify_Translator [accessed 13.10.11].

[31] GlusterFS Schedulers. http://www.gluster.com/community/documentation/index.php/
Translators/cluster/unify [accessed 13.10.11].

[32] Understanding AFR Translator. http://www.gluster.com/community/documentation/
index.php/Understanding_AFR_Translator [accessed 13.10.11].

[33] Internals of Replicate. http://www.gluster.com/community/documentation/index.php/
Internals_of_Replicate [accessed 13.10.11].

[34] Gluster Community Homepage. http://www.gluster.com/community/documentation/
index.php/Main_Page [accessed 13.10.11].

[35] Future of Block Storage in the Cloud. Said Syed, Cloud Computing Journal. http://
cloudcomputing.sys-con.com/node/909540 [accessed 13.10.11].

386 CHAPTER 9 Related Technologies

http://www.panasas.com/products/architecture.php
http://performance.panasas.com/wp-panasasstorageforpetascalesystems-jan10.html
http://performance.panasas.com/wp-panasasstorageforpetascalesystems-jan10.html
http://performance.panasas.com/wp-scalableperformanceofthepanasasparallelfilesystem-2008.html
http://performance.panasas.com/wp-scalableperformanceofthepanasasparallelfilesystem-2008.html
http://www.hpcadvisorycouncil.com/events/switzerland_workshop/pdf/Presentations/Day%203/3_HP.pdf
http://www.hpcadvisorycouncil.com/events/switzerland_workshop/pdf/Presentations/Day%203/3_HP.pdf
http://wiki.lustre.org/lid/subsystem-map/subsystem-map.html
https://docs.google.com/viewer?url=http://wiki.lustre.org/images/0/00/A_Deep_Dive_into_Lustre_Recovery_Mechanisms.pdf
https://docs.google.com/viewer?url=http://wiki.lustre.org/images/0/00/A_Deep_Dive_into_Lustre_Recovery_Mechanisms.pdf
https://docs.google.com/viewer?url=http://wiki.lustre.org/images/0/00/A_Deep_Dive_into_Lustre_Recovery_Mechanisms.pdf
http://wiki.lustre.org/index.php/Lustre_Center_of_Excellence_at_Oak_Ridge_National_Laboratory#Lustre_Scalability_Workshop_-_Feb_10_.26_11.2C_2009.2C_ORNL
http://wiki.lustre.org/index.php/Lustre_Center_of_Excellence_at_Oak_Ridge_National_Laboratory#Lustre_Scalability_Workshop_-_Feb_10_.26_11.2C_2009.2C_ORNL
http://wiki.lustre.org/index.php/Lustre_Center_of_Excellence_at_Oak_Ridge_National_Laboratory#Lustre_Scalability_Workshop_-_Feb_10_.26_11.2C_2009.2C_ORNL
http://wiki.lustre.org/index.php/Lustre_Community_Events,_Conferences_and_Meetings
http://wiki.lustre.org/index.php/Lustre_Community_Events,_Conferences_and_Meetings
http://www.gluster.com/community/documentation/index.php/GlusterFS_2.0.6
http://www.gluster.com/community/documentation/index.php/GlusterFS_2.0.6
http://ftp.gluster.com/pub/gluster/documentation/Gluster_Architecture.pdf
http://ftp.gluster.com/pub/gluster/documentation/Gluster_Architecture.pdf
http://www.gnu.org/software/hurd/hurd/translator.html
http://www.gluster.com/community/documentation/index.php/Translators_v2.0
http://www.gluster.com/community/documentation/index.php/Translators_v2.0
http://www.gluster.com/community/documentation/index.php/Understanding_Unify_Translator
http://www.gluster.com/community/documentation/index.php/Understanding_Unify_Translator
http://www.gluster.com/community/documentation/index.php/Translators/cluster/unify
http://www.gluster.com/community/documentation/index.php/Translators/cluster/unify
http://www.gluster.com/community/documentation/index.php/Understanding_AFR_Translator
http://www.gluster.com/community/documentation/index.php/Understanding_AFR_Translator
http://www.gluster.com/community/documentation/index.php/Internals_of_Replicate
http://www.gluster.com/community/documentation/index.php/Internals_of_Replicate
http://www.gluster.com/community/documentation/index.php/Main_Page
http://www.gluster.com/community/documentation/index.php/Main_Page
http://cloudcomputing.sys-con.com/node/909540
http://cloudcomputing.sys-con.com/node/909540

[36] Foster I, Kesselman C, Tuecke S. The Anatomy of the Grid - Enabling Scalable Virtual
Organizations; 2001.

[37] Globus Homepage. http://globus.org [accessed 13.10.11].
[38] Globus Technical Papers. http://www.globus.org/alliance/publications/papers.php

[accessed 13.10.11].
[39] Foster I. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP inter-

national conference on network and parallel computing, Springer-Verlag LNCS 3779;
2005. p. 2–13.

[40] Foster I. A Globus Primer, Describing Globus Toolkit Version 4.
[41] Foster I. Globus Toolkit Version 4: Software for Service Oriented Systems. Comput

Sci Technol, July 2006.
[42] An EGEE comparative study: grids and clouds evolution or revolution, June 2008.

http://www.informatik.hs-mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-
v1_2.pdf; 2008 [accessed 13.10.11].

[43] Myerson J. Cloud Computing versus Grid Computing, IBM, Mar 2009.
[44] Managing Advance Reservations in Sun Grid Engine, Sun Grid Engine Information

Center, 2010.
[45] Ganek A. Overview of Autonomic Computing: Origins, Evolution, Direction. http://

www.maiuscentral.com/w/images/7/76/Garek.pdf [accessed 13.10.11].
[46] Differences between ASP model and SaaS model. www.luitinfotech.com/kc/saas-asp-

difference.pdf [accessed 13.10.11].

References 387

http://globus.org
http://www.globus.org/alliance/publications/papers.php
http://www.informatik.hs-mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-v1_2.pdf
http://www.informatik.hs-mannheim.de/~baun/SEM0910/Quellen/EGEE-Grid-Cloud-v1_2.pdf
http://www.maiuscentral.com/w/images/7/76/Garek.pdf
http://www.maiuscentral.com/w/images/7/76/Garek.pdf
http://www.luitinfotech.com/kc/saas-asp-difference.pdf
http://www.luitinfotech.com/kc/saas-asp-difference.pdf

This page intentionally left blank

CHAPTER

10Future Trends and
Research Directions

INFORMATION IN THIS CHAPTER:

• Emerging Standards

• Cloud Benchmarks

• End-user Programming

• Open Cirrus

• Open Research Problems In Cloud Computing

INTRODUCTION

Since cloud computing is a rapidly evolving technology, this chapter describes
some future developments that are likely to become important. A Gartner survey
has shown that one of the major inhibitors to cloud computing is the lack of stan-
dardization leading to vendor lock-in [1]. Of course, this is partly due to the fact
that cloud computing is rapidly evolving, making standardization difficult. The
first section in this chapter, titled Emerging Standards, surveys new standards that
have the potential to address this concern. Another problem with vendor lock-in is
that even if standards were to emerge, currently there is no accepted method for a
cloud user to compare different cloud vendors and select the best for a particular
application. This is in contrast to the situation in, say, databases, where there are
benchmarks such as TPC-C that allow different database vendors to be compared.
The second section, called Benchmarks, therefore, describes efforts underway to
develop benchmarks that can help in assessing the suitability of a particular cloud
system for an application. The third section describes Open Cirrus, a large
research testbed for research in cloud-computing technology, which may be very
useful for readers interested in experimenting with novel cloud solutions or algo-
rithms. The last section of the chapter, titled End User Programming, describes
research efforts that would make it possible for users who are not programmers to
develop personal applications with simple scripts and programs.

EMERGING STANDARDS
Lack of standards leading to vendor lock-in has been found to be a major customer
concern for Cloud Computing [1]. This problem increases when we go higher up in

Moving to the Cloud. DOI: 10.1016/B978-1-59749-725-1.00010-X
© 2012 Elsevier, Inc. All rights reserved.

389

http://dx.doi.org/10.1016/B978-1-59749-725-1.00010-X

the cloud computing stack. SaaS customers have a greater lock-in than PaaS
customers, since they have to migrate from one application platform to another;
similarly PaaS customers have a greater lock-in than IaaS customers, since they
have to migrate from one cloud platform to another. The migration is made more
difficult because cloud computing is a rapidly evolving technology; hence different
clouds may offer differing functionality.

In spite of this rapid evolution, standards are emerging in multiple areas related to
cloud computing. Since cloud computing is based on Service Oriented Architecture
(SOA),1 standardization efforts have focused on standardizing the services and
interfaces provided by clouds. Different standards bodies are focused on standardiz-
ing different type of cloud services.

Storage Networking Industry Association (SNIA)
The Storage Networking Industry Association (SNIA), a well-known standards devel-
opment organization for the storage and database world, has recently proposed a stan-
dard way of using cloud storage called the Cloud Data Management Interface
(CDMI) [2]. The standard enables the users to develop cloud applications without
being locked into a specific vendor for storage services. This standard is endorsed by
many key organizations working on the development of cloud technologies, such as
ITU-T (the International Telecommunication Union), the TeleManagement
Forum, SIENA (the European Standards and Interoperability for Infrastructure
Implementation Initiative), and NIST (the U.S. National Institute of Standards
and Technology). CDMI is targeted at a set of specific use cases. Each use case
is supported by some CDMI APIs. For unsupported use cases and functionality,
vendors can define their own CDMI extensions.

NOTE
CDMI Use Case Summary
• Elastic provisioning
• Cloud backup
• Cloud archiving
• Cloud storage

CDMI use cases: The CDMI standard addresses a number of use cases of
cloud storage, namely, (a) catering to elastic on-demand access to storage –
increasing or decreasing storage provisioning to be able to handle the load on a
specific data object; (b) outsourcing regular backup of data; (c) retaining data for a
certain number of years for audit compliance and other legislative needs; (d) storage
for cloud-computing applications, which is the use case that has been extensively
described in this book. In all of the previous use cases, there are a set of service

1SOA refers to a software architecture designed with a set of principles and methodologies in the
form of interoperable (web) services.

390 CHAPTER 10 Future Trends and Research Directions

APIs specified. The cloud user just uses a URL to access the cloud storage, and the
vendor can perform any needed optimizations at the backend to ensure that the
access is efficient and satisfies the quality of service that has been agreed upon. So,
these standards are useful both to the vendor as well as the consumer of storage.
Figure 10.1 depicts the cloud storage model proposed by SNIA [3]. First of all,
multiple standard storage access protocols are supported for data access in the form
of block access (iSCSI), file access (POSIX) or database table access. Additionally,
once a cloud storage provider has hosted a customer’s data in the cloud, the custo-
mer can use CDMI to tell the cloud storage provider the list of data services needed
for a specific data object.

The standard prescribes special metadata called data-system metadata that is
used to tag data. These tags specify the non-functional requirements for handling
of the data, such as, whether the data needs archiving, backup, or encryption.
The data-system metadata allows for detailed specification of the requirements; for
example for backup, it is possible to specify if the backup is to be done daily
instead of weekly, the number of copies that are needed for this data object, and
the retention period. Once vendors have implemented the CDMI interface, the

Data
services

Cloud data
management

Clients accessing data

Block access

ProprietaryPOSIX, NFS,
CIFS, WebDAV

iSCSI, FC,
FCoE

Storage
Management

Client

SNIA CDMI

SNIA CDMI

SNIA CDMI

SNIA CDMI SNIA CDMI

Resources

Data storage cloud

File access DB access Object access XAM access

Storage
services

Information
services
(future)

FIGURE 10.1

CDMI cloud storage reference model.

Emerging Standards 391

customers can move their data from one cloud vendor to another without any
change in the application.

CDMI APIs: The CDMI APIs are specified in terms of containers and
objects (resource). The user creates a container, puts the relevant data objects in it
and specifies the data services needed for the container. This allows the user to
group data according to their storage requirements. Every resource is addressable
with a unique identifier, enabling a scale-out architecture at the backend. The
standard supports five types of resources:

1. Container
2. Data object
3. Capabilities
4. Domain mime type
5. Queue mime type

Container and Data Object mime types are self explanatory. The Domain
mime type is to access billing and activity information and the Queue mine type
gives access to audit trails and access logs. The Capability mime type provides
the information about security and access control data for a specific object. All
this information can be obtained programmatically and not only through a user
interface.

The following shows an example API to request (GET method) the capabilities
of a storage resource.

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/vnd.org.snia.cdmi.capabilitiesobject+json
X-CDMI-Specification-Version: 1.

A typical response to the request as prescribed by CDMI SNIA technical
position [4] should be:

HTTP/1.1 200 OK
Content-Type: application/vnd.org.snia.cdmi.capabilities+json
X-CDMI-Specification-Version: 1.0
{

"objectURI" : "/cdmi_capabilities/",
"objectID" : "AABwbQAQWTYZDTZq2T2aEw==",
"parentURI" : "/",
"capabilities" : {

"cdmi_domains" : "true",
"cdmi_export_nfs" : "true",
"cdmi_export_webdav" : "true",
"cdmi_export_iscsi" : "true",
"cdmi_queues" : "true",
"cdmi_notification" : "true",
"cdmi_query" : "true",
"cdmi_metadata_maxsize" : "4096",

392 CHAPTER 10 Future Trends and Research Directions

"cdmi_metadata_maxitems" : "1024",
"cdmi_size" : "true",
"cdmi_list_children" : "true",
"cdmi_read_metadata" : "true",
"cdmi_modify_metadata" : "true",
"cdmi_create_container" : "true",
"cdmi_delete_container" : "true"

},
"childrenrange" : "0-3",
"children" : [

"domain/",
"container/",
"dataobject/",
"queue/"

]
}

The APIs prescribed by the standard use the RESTful protocol, i.e., they con-
sist of CRUD operations (Create, Read, Update and Delete). The messages that
encode the parameters and results of the operations consist of key-value pairs in
JSON2 format. The interface is therefore similar to other NoSQL applications.
Standard HTTP verbs (PUTs and GETs) are used in the API and all other seman-
tics of the data are passed in the body of the message payload. Different mime
types are used for different types of resources, as described earlier. A new RFC to
define special mime types to be used by CDMI has been defined. There are also
search APIs for metadata search, so that it is easy for the stored data to be
searched through a query. In the background, the storage system metadata such as
access control list, access time and others can be used by the cloud vendor to
optimize the storage.

CDMI extensions: CDMI also has a change control process under SNIA. One
can extend CDMI for proprietary vendor functions, and still maintain core com-
patibility with all the other vendors. If many vendors implement a new feature,
then that feature will be added to the standard.

All of these aspects of CDMI are depicted in Figure 10.2. These standards
are developed as a part of the SNIA Cloud Storage Initiative (CSI). This is
predominantly a marketing initiative that fosters adoption of cloud storage and
the model of delivering on-demand storage as an elastic, pay-as-use service.
SNIA has also announced the formation of a Cloud Backup and Recovery
Special Interest Group (Cloud BUR SIG) to foster the backup and recovery
industry by educating potential users, and hence creating demand for such
services.

2See Chapter 5, Paradigms for Developing Cloud Applications.

Emerging Standards 393

DMTF Reference Architecture3

The Distributed Management Task Force (DMTF) is an industry consortium that
develops, maintains and promotes standards for systems management in an enterprise
IT environment. A subgroup of this organization called the DMTF Cloud Incubator
Standards group defined the first cloud management architecture in July 2010 [5]
shown in Figure 10.3. This architecture and the accompanying use cases documents
describe standardized interfaces and data formats that can be used to manage cloud
environments, mainly IaaS platforms. At a high level, the key concept is that a cloud
service provider abstracts the resources at the IaaS layer (servers, storage, network,
etc.) and provides them as a service to a cloud consumer. The provider not only
exposes multiple services for the functionality of the platform (functional interfaces)
but also provides access to artifacts such as Service-Level Agreements (SLA), OS
images, any service templates for customization and so on.

The DMTF architecture defines six lifecycle states for this cloud service, and
Figure 10.4 depicts these states in a conceptual overview of cloud management
activities. The first state involves defining a service template wherein the consu-
mer provides a description of and interfaces to the desired cloud service, including
the desired configuration. This is submitted by the consumer to the cloud provider.
An offering is then created by the cloud service provider which adds constraints,
costs, billing information, and policies to the template, and is then offered to the
consumer. The consumer and provider then enter into a contract, with agreements
for costs, SLAs and so on. The provider then provisions a service instance as per
the contract with the consumer. Multiple resources may be provisioned during this
step. Subsequently, the cloud provider does runtime maintenance and manages
the deployed service, such as monitoring resource usage, raising alarms on

Metadata

System

Read or Write
data

Location Storage Data

GET/PUT
(HTTP)

Query
URls

Access
modify ACLs

Data services Application
specific

User

FIGURE 10.2

CDMI APIs and resource domain model.

3Contributed by Dr. Vanish Talwar, Hewlett-Packard Labs, USA.

394 CHAPTER 10 Future Trends and Research Directions

Template

Cloud Service
Lifecycle

 Create service
 template
 Update service
 template
 Delete service
 template

 Terminate service
 contract
 Terminate service

Offering

 Create service
 offering
 Update service
 offering
 Delete service
 offering

Runtime Maint

 Monitor service
 resources
 Event notification
 Contract reporting
 Contract billing

Provision Service

 Provision
 resources
 Deploy service
 template
 Change resource
 capacity

Contract

 Establish relationship
 Administer
 relationship
 Establish service
 contract
 Update contract

End of Service

FIGURE 10.4

DMTF cloud service lifecycle.

Cloud service developer

Functional interfaces

Service
catalog

Security
manager

Cloud service provider

Service
manager

Cloud service consumer

Data artifacts

Request SLA Contracts

OfferingsService templates

Provider
interface

FIGURE 10.3

Data reference architecture for cloud management.

Emerging Standards 395

abnormal behavior, and adjusting resource allocations. Finally, the provider halts a
service instance, and reclaims resources given to that service.

With the complexity and scale in cloud systems, several of these management
tasks become non-trivial in computation, design, and in the number of execution
steps performed. Automation is needed to replace manual operations and reduce
overall costs. However, there are several challenges to achieve a fully automated
solution. Provisioning multiple resources requires creation of automated work-
flows, coordination across multiple resource types, and automated configuration of
systems, middleware, and applications. Runtime maintenance requires monitoring
of highly dynamic distributed infrastructure, monitoring dynamic partitioning,
allocation, and de-allocation of infrastructure. Overall objectives are to maintain
SLAs specified by the user, which have to be translated across the IaaS, PaaS,
and SaaS layers, as well as to maintain data center metrics such as energy effi-
ciency and sustainability. All of these need to take place under the constraints and
challenges of silo-ed IT infrastructures, scale, multiple management protocols, and
multiple control loops.

The current solutions address these management challenges to some extent, but
several open questions remain to achieve fully automated, self-managing solutions
that can scale to the future cloud systems.

NIST
Another organization that has played an important role in standardization efforts
around cloud computing is NIST (National Institute of Standards and Technology,
US Department of Commerce). The work of NIST in defining cloud terminology
was extensively discussed in Chapter 1 and standards around cloud security were
described in detail in Chapter 7. Just to recall, NIST defined the standard terminolo-
gies used by the cloud community today, such as IaaS, PaaS, SaaS, private cloud,
public cloud, etc. In fact, this is the standards body that came up with the most
accepted definition of the term “cloud computing” as follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction.

NIST also defined the four deployment models for the cloud: public cloud,
private cloud, community cloud and hybrid cloud. As described earlier, private
clouds are operated just for an organization, and public clouds (e.g., Amazon) are
available for use by the general public. Community cloud is an infrastructure that
is shared by multiple institutions with shared concerns. Hybrid cloud infrastructure
is a combination of private, public and community clouds which are interoperable
using standardized or proprietary technology and provides sharing of data and
application across the clouds. Chapter 6 described some of the tools used to create
Hybrid Clouds (such as Eucalyptus and OpenNebula).

396 CHAPTER 10 Future Trends and Research Directions

IEEE
As part of its cloud push, IEEE started two working groups in April 2011. These
are IEEE P2301, the Draft Guide for Cloud Portability and Interoperability Pro-
files, and IEEE P2302, the Draft Standard for Intercloud Interoperability and
Federation, which will together look at a wide variety of areas that need standar-
dization for the cloud computing community. The P2301 workgroup will work on
standardizing cloud portability and management, using a number of file formats
and interfaces. The P2302 workgroup will focus on cloud-to-cloud interoperability
and federation. It will, for example, work on standardizing gateways that can han-
dle data exchange between clouds. Since this effort was newly initiated at the
writing of the book, the reader should refer to the latest drafts at http://standards.
ieee.org [6, 7].

Open Grid Forum (OGF)
Another open community-led specification is spearheaded by the OGF, a stan-
dards development organization for grid computing and other distributed comput-
ing systems. OGF has started a working group called Open Cloud Computing
Interface (OCCI) to focus on vendor-independent access to resources. OCCI also
provides service APIs for remote management of cloud infrastructure.

Figure 10.5 describes the role of OCCI with the provider’s environment. As
seen, the key benefit of OCCI is to enable an OCCI client to connect to an OCCI
implementation over a vendor’s infrastructure without having any prior knowledge
of the resources. OCCI makes these resources discoverable and accessible through
the simple concept of resource types. There are three fundamental categories under-
lying OCCI – resources, actions, and links. Any component available through
OCCI is a resource – be it a virtual machine, a user or a simple job. One resource

ResourcesResource
management

framework

OCCI

Internal

Proprietary
API

IMF

Internal

HTTP

oPro

HHTTP

FIGURE 10.5

OCCI’s place in a provider’s architecture.

Emerging Standards 397

http://standards.ieee.org
http://standards.ieee.org

is associated with another using a link type. An action represents an operation that
can be performed on the resource instance. There are other types that represent the
schema or classification type hierarchy for the resources.

CLOUD BENCHMARKS
Cloud standards enable a cloud user to develop services in a manner in which
they can be reused on a different vendor’s platform. In contrast, cloud benchmarks
help customers compare various cloud systems and choose the right one for final
deployment. A benchmark consists of a workload that is run against a computer
system to produce a standard set of measurements that can be used to analyze the
system. The workload consists of a series of commands that load the computer
system. For example, the Transaction Processing Performance Council-C
benchmark (TPC-C) defines a standard database workload (e.g., queries, updates)
that can be run against a database. Using the data produced by the TPC-C run, it
is possible to measure the cost per query of the system.

Benchmarks are useful for many purposes. First, benchmarks can be used to
compare different systems. In the TPC-C example, the measurements can be used
to select the least expensive system from many alternatives. Benchmarks can also
be used to tune or configure systems. For example, multiple TPC-C runs can be
made against differently configured databases with the same database software
(such as varying the amount of memory in the CPUs) to find the best configura-
tion. Finally, benchmarks can be used for capacity planning; when installing a
new database, the TPC-C measurements of a system can be used to estimate the
number of CPUs, amount of memory, and other resources that are needed for the
database.

NOTE
Uses of Benchmarks
• System comparison
• Tuning and configuration
• Capacity planning

The usefulness of a benchmark, clearly, is related to how closely the benchmark
workload matches the actual workload on the system. For this reason, the well-
known web server workloads (e.g., httpperf [8], SPECWeb2005 [9]) may not be
useful for measuring clouds [10]. The reasons are that the earlier web server
benchmarks were designed to study systems where the workload predominantly
consisted of users accessing web pages. This will not be relevant for many cloud
applications, such as social computing applications where users upload photos and
other documents that are accessed by other users. Another difference is that many
cloud applications run within a web browser and leverage rich clients (e.g., Flash)
to perform some processing in the client. This processing can lead to “light-weight”

398 CHAPTER 10 Future Trends and Research Directions

(e.g., AJAX) requests being sent to the server (e.g., when signing up for a new
userid on a web site, the client may make a background request to see if the userid
is available before the registration is complete). This changes the nature of the
workload. Finally, the pay-as-you-go economics of cloud computing imply that
benchmarks should try to exercise the system from the point of view of easy
scalability and growth.

In the rest of this section, various benchmarks are discussed. First, Cloudstone,
a well-known system benchmark (benchmark that measures all the components of
a cloud) is described. This is followed by a description of Yahoo Cloud Serving
Benchmark (YCSB), a storage benchmark (i.e., that benchmarks cloud storage
systems). Finally, CloudCMP, a research collaboration between Duke University
and Microsoft Research that aims to compare the performance and cost of various
cloud service providers, is described. The benchmarks will be described in a
standard format: first, the setup (computer systems and programs used) will be
described, followed by important components, such as the workload generator.
Then, the measurements produced by the benchmark will be discussed, followed by
example results.

Cloudstone
Cloudstone is a benchmark from the University of California, Berkeley, and Sun
Microsystems. It is intended to measure the performance of social-computing applica-
tions on a cloud, thus providing insight into the performance characteristics of the
cloud system. Figure 10.6 shows the components of Cloudstone. They consist of
Olio, a social-event calendar application, which can be deployed as shown on the
cloud system to be benchmarked. Olio has a three-tier architecture where the web ser-
ver tier runs Apache, and the database tier runs MySQL. The middle tier can be either
Ruby or PHP, resulting in two different implementations, either of which can be
deployed. Faban is a workload generator that runs on the clients and simulates large
numbers (thousands) of users simultaneously accessing Olio. Finally, the Tools
shown perform management tasks, such as deploying Olio, and measuring the perfor-
mance of the cloud system. The results of the Cloudstone benchmark are the cost of
running Olio on the cloud system in dollars per user per month.

NOTE
Cloudstone Components
• Olio: calendar application
• Faban: workload generator
• Measuring and management tools.

All the previously described Cloudstone software is available both in the form
of regular source code and binaries, as well as Amazon AMIs that can be run on
EC2. To run Cloudstone on other cloud systems, it is necessary to convert the
source code or binaries to the form deployable on the other cloud system.

Cloud Benchmarks 399

Faban Workload Generator
Faban is a Markov chain based workload generator, i.e., it assumes that each
client is in a particular state at any time. The client then issues a series of commands,
which is characteristic of that state. It could then transition to another state based
upon certain probabilities (the Markov chain state transition probabilities) where it
could issue another series of commands. For example, from the initial state, the
client may transition with probability 1 to the login state, where the client issues the
commands to login to Olio. From the login state, it may transition with a certain
probability to a daily calendar state where (after a random delay) it issues the
HTTP commands to display the daily calendar, with another probability to a weekly
calendar state, and so on. Such workload generators have been found to be very
general and model the activity of users well. For example, it is not necessary that all
the users of the system submit identical transactions; it is possible to model different
types of users who submit different types of transactions [11]. Faban has a description
of the state transition probabilities, as well as the commands issued in each state. By
running many independent copies of Faban on the clients, workloads consisting of
thousands of users may be simulated.

Cloudstone Measurements and Results
As stated earlier, Cloudstone reports the dollars (or cost) per user per month for
the cloud system being benchmarked (assuming the cloud system is a typical

Clients running
Faban and tools

Olio

Tools

FIGURE 10.6

Cloudstone components.

400 CHAPTER 10 Future Trends and Research Directions

public cloud where the CSP charges based on usage). This is accomplished by
dividing C, the cost of the system per month, by M, the maximum number of
users that can be supported by the system.

To find M, Faban is run with a specified number of users during a measure-
ment interval (5 minutes), and the Cloudstone tools are used to check whether the
benchmark Service Level Agreement (SLA) is violated. The SLA is described in
more detail later in this section. If the SLA is not violated, the number of users is
increased. M is defined as the maximum number of users that can be run without
violating the SLA.

Cloudstone defines two SLAs called SLA-1 and SLA-2. SLA-1 states that
90% of response times to requests made by the simulated users is less than the
specified value. This value depends upon the type of request from the simulated
user (e.g., login) and varies from 1 to 4 seconds. Similarly, SLA-2 states that 99%
of the response times are less than the specified value. Faban measures the
response time of each request to Olio, and Cloudstone provides tools to compute
the 90th percentile and 99th percentile of response time. From this, it can easily
be determined if the SLAs are violated.

Example Cloudstone Results
The Cloudstone benchmark was used in Cloudstone [10] to study various config-
urations to find the most cost-effective configuration for hosting Olio on EC2. To
generate the configurations, three factors were varied:

• The first was the type of EC2 instance used.4 Two different types were used;
type C1.XL had 7 GB RAM and 20 compute units (8 cores of speed 2.5
compute units each). The second type M1.XL is a large memory instance that
had 15 GB RAM but only 8 compute units of CPU (4 cores of speed 2
compute units each). These two instance types were considered as their cost
(at the time of the experiment) was the same at $0.80 per hour.

• The second factor varied was the implementation. Three different
implementations: Ruby, Ruby with caching enabled,5 and PHP with caching
enabled were considered.

• The third factor was the number of application servers.

After running the Cloudstone benchmark, it was found that the cost per user
per month varied from $1.40 per user per hour to $8.50 per user per hour,
depending upon the configuration and the implementation. The lowest cost imple-
mentation used Ruby+caching on C1.XL servers with 2 application servers. It was
seen that the difference between the highest and lowest cost is more than a factor
of 6. Therefore, Cloudstone was quite useful to find the best system design for
optimizing the architecture of the Olio deployment. Furthermore, additional

4For a detailed description of the various types of Amazon EC2 instances, please see Chapter 2,
Infrastructure as a Service.
5For more details of the caching, please see [10].

Cloud Benchmarks 401

interesting conclusions could be drawn from the runs; for example it was found
that logging caused significant performance degradation, reducing the maximum
request rate by approximately 20%; and that the nginx load balancer significantly
increased the throughput compared to the mod_proxy load balancer. A detailed
discussion of the difference between nginx and mod_proxy, including workloads
where each web server is superior, can be found in Nginx Primer 2 [12].

Yahoo! Cloud Serving Benchmark
Yahoo! Cloud Serving Benchmark (YCSB) is a benchmark that measures the per-
formance of a cloud storage system (such as HBase) against standard workloads,
such as a threaded conversation application where users scan conversations and
append their own posts [13]. The workload can also be customized to simulate the
storage requests from any application. Figure 10.7 shows the components of the
benchmark. The YCSB Client is a multi-threaded Java program whose components
are shown in Figure 10.7. The workload generator generates requests to load the
database, as well as the storage requests made by the application. The statistics mod-
ule collects important statistics, such as the maximum number of I/O requests per sec-
ond the storage cloud can provide. The database plug-ins make the actual I/O
requests to the storage; plug-ins are provided for important storage systems such as
HBase. YCSB provides mechanisms to create plug-ins to any other storage system.
The workload generator and statistics modules are discussed in greater detail next.

YCSB Workload Generator
The YCSB workload generator can generate a number of standard workloads, as
well as custom workloads. The reason for this is that the performance of the sto-
rage system may vary, depending upon the workload, due to the different design
decisions made while implementing the storage system. As a result, different sto-
rage systems may be optimal for different workloads. The standard workload is
implemented by a class called CoreWorkload. To define a new workload, this class
should be replaced by a new class that extends the Workload class. This class

YCSB client

Storage

Client threads

Workload
generator

Statistics
Database
plug-ins

FIGURE 10.7

Yahoo! Cloud Serving Benchmark architecture.

402 CHAPTER 10 Future Trends and Research Directions

should have two methods – doInsert to initialize the database, and doTransaction
to execute a storage operation.

The workload generator operates in two phases. The first phase loads the data-
base (which could take hours); the second phase performs operations on the data-
base. Measurements are conducted in the second phase (typically 30 minutes).

There are three major parameters that control the operation of the workload
generator. These are the parameters that generally have been found to be impor-
tant in other (non-cloud) storage benchmarks as well, such as IOZone [14]. The
first is the operation mix, e.g., the number of read requests versus the number of
write requests. The operations performed by the workload generator are insert,
delete, read, update (write), and scan (search the entire database looking for a
key, then read a specified number of records). The second is the record size of
the records being read. The third parameter is the popularity distribution; i.e.,
the probability that a particular record may be read or written.

YCSB provides three popularity distributions. The first is the Zipf distribution,
which is characteristic of access probabilities in a large number of areas such as
the popularity of words in a language, the distribution of sizes of US firms, the
popularity of web sites, and the distribution of incomes [15]. The Zipf distribution
is given by the following formula:

pðkÞ = Kð1/kÞα

The equation finds the probability that the kth item would be selected, and K
and α

_
are parameters of the distribution. Under the Zipf distribution, the first few

items are very popular, and the popularity declines very rapidly for later items,
depending upon the value of α. However, the Zipf distribution is not appropriate
for simulating situations where new items are more popular than older items, such
as blog posts. For this, YCSB provides the Latest distribution. This is the same
as the Zipf distribution, except that newly inserted items are moved to the top of
the list. The final distribution is the Uniform distribution, where all records have
equal probability of being accessed. This could be characteristic of databases,
where all records have equal probability of being accessed.

Table 10.1 summarizes the standard workloads provided by YCSB, together
with example applications they are intended to be representative of. They are largely
self-explanatory. In workload C, it is assumed that the actual user profile is stored
separately; hence the workload is read-only. In workload E, the Zipf distribution is
used to select the conversation and thread to be read; the Uniform distribution is then
used to select a number of records to read.6

YCSB Measurements and Results
YCSB currently performs two sets of measurements (called tiers) for measuring
the performance and scalability of cloud storage systems. An additional two sets

6In this instance, the Uniform distribution is not being used as a popularity distribution to select a
particular item.

Cloud Benchmarks 403

of measurements for measuring the impact of availability and replication are
proposed, but not yet implemented as of this writing. These sets of measurements
are described in the rest of this section.

Tier 1 – Performance: In this set of measurements, multiple runs are per-
formed, for different values of load on the storage system. The load on the storage
system is measured in terms of throughput (operations/sec). For each value of
load, the response time latency per operation is measured. The increase in latency
as the load on the storage systems increases (until saturation) is studied.

Tier 2 – Scalability: Two different aspects of scalability are studied. In the
scale-up measurements, after each benchmark run is complete, the data on the
storage system is deleted, additional servers are added to the storage system, the
storage system is loaded with proportionately more data, and the benchmark is re-
run to find the saturation throughput of the new system. Ideally, the maximum
throughput per server should remain constant. In the elastic speedup measure-
ments, after the measurements with the existing servers are completed, the new
server(s) are added without deleting any data, the storage system is re-configured
to use the new server, and a new set of measurements is made. The maximum
throughput per server should remain constant here as well.

Tier 3 – Availability: It is proposed that to measure the impact of availability,
faults (e.g., failure of a server) should be injected into the storage system, and the
resulting degradation in performance be measured. Issues that need to be dealt
with are the mechanism to inject faults into heterogeneous storage systems in a
uniform manner. As of this writing, this has not yet been implemented.

Tier 4 – Replication: Replication increases the availability of a storage system
by providing for multiple replicas of the data. However, it also results in addi-
tional overhead of replication, as well as complexity in keeping the replicas con-
sistent. A detailed discussion of replication in cloud systems can be found in

Table 10.1 YCSB Standard Workloads

No. Workload
Description

Operation
Mix

Popularity
Distribution

Example Application

A Update heavy Read: 50%,
Update: 50%

Zipf Recording user session
actions

B Read heavy Read: 95%,
Update: 5%

Zipf Photo site; mostly view
photo, but also update tag

C Read only Read: 100% Zipf User profile cache

D Read latest Read: 95%,
Insert 5%

Latest User status update;
mostly read status

E Short ranges Scan: 95%,
Insert: 5%

Zipf &
Uniform

Threaded conversations
clustered by thread

404 CHAPTER 10 Future Trends and Research Directions

Chapter 6, Addressing the Cloud Challenges. It is proposed to measure these
trade-offs for a particular system by suitable modification of YCSB.

Example YCSB Results
In this section, example results from the YCSB runs are described. Four storage sys-
tems – Cassandra, HBase, sharded MySQL, and PNUTS – were studied. These sys-
tems are described in detail in Chapter 5 Application Development Paradigms. For
the Update Heavy workload, Cassandra had the best throughput (11798 operations/
sec), followed in order by HBase, PNUTS, and sharded MySQL (7283 operations/
sec). However, for the Short Ranges workload, with ranges of 100 records, HBase
and PNUTS are roughly equivalent (1519 and 1440 operations/sec, respectively)
while Cassandra is much worse (<100 operations/sec). This is because Cassandra is
optimized for writes (leading to better performance on the Update Heavy workload),
while the scan support was relatively new at the time of measurement. More details
can be found in Benchmarking Cloud Serving Systems with YCSB [16].

The scalability measurements also yielded interesting results, showing that Cas-
sandra and MySQL had good scaleup, while HBase tended to be unstable in perfor-
mance for small (<3) clusters. The elastic speedup results showed that re-partitioning
overhead in the version of Cassandra that was studied is high, resulting in the system
taking a long time (of the order of hours) to stabilize after adding new servers.

CloudCMP
This section describes CloudCMP, a research project between Duke University
and Microsoft Research [17, 18, 19, 20]. CloudCMP is aimed at enabling compar-
ison shopping of cloud service providers by predicting the performance and cost
of running an application on a cloud service provider. The papers contain mea-
surements of four well-known cloud platforms: Amazon AWS, Microsoft Azure,
Google AppEngine, and Rackspace CloudServers.

One of the challenges of such a project is the fact that different cloud provi-
ders differ significantly, and coming up with a common methodology may be dif-
ficult. For example, cloud providers could have different cloud models (IaaS,
PaaS, SaaS), and offer different services as well. Additionally, the cloud providers
also have different pricing methods. To overcome this difficulty, CloudCMP uses
a four-step process.

1. CloudCMP characterizes all cloud providers in terms of a set of standard
services (such as an Elastic compute cluster).

2. Next, CloudCMP attempts to characterize the pricing and performance of the
standard services available from each service provider (e.g., the price/
performance of computing available from the service provider).

3. The service requirements of each application are derived (e.g., the compute
power per transaction).

4. Finally, the price and performance of each application on each service provider
is derived.

Cloud Benchmarks 405

CloudCmp Architecture
CloudCmp models a cloud as a combination of four standard services that
measure compute, storage, internal networking, and WAN. These services, and
their characterization, are given later in this section, following which the section
describes how to model a typical 3-tier web service in CloudCmp. Details of the
tools used to measure these metrics can be found in CloudCmp [20].

Elastic Compute Cluster: These services model the compute services of a
cloud. CloudCMP measures three metrics associated with the compute services.
The first is the benchmark finishing time, which is the time to run a standard
benchmark. The benchmark is similar to conventional CPU benchmarks. The sec-
ond metric is the benchmark cost. These two metrics together provide insight into
cost-performance trade-offs of various clouds; for example, comparing the costs of
various Amazon EC2 instance types with their costs. The third metric is the scaling
latency, which is the time taken to allocate a new compute instance. This is an
important metric, since it determines how quickly a system can scale, and is
typically in the 100s of seconds as of this writing.

Persistent Storage Service: as seen in Chapters 2 through 4, various cloud
providers offer different types of storage services. These are characterized by
CloudCmp into three types: table, blob and queue storage. Table storage consists
of relational as well as NoSQL storage which operates on structured data.
CloudCmp models three types of operations on table storage: get, put, and query.
Blob storage consists of storage that can download or upload a binary file (for
example, a file storage service like Amazon S3). Finally, queue storage (as in
Windows Azure) can be used for messaging and is modeled using send and
receive operations. For each operation, CloudCmp measures the operation
response time and the cost. Additionally, for replicated storage, the time taken to
reach a consistent state is measured (this is the same as the inconsistency window
described in Chapter 6, Addressing the Cloud Challenges).

Intra-cloud Network: This measures the internal network that connects the
various cloud components. It is characterized by two metrics: TCP throughput
and TCP response time. TCP throughput is used since it is assumed that the
cloud traffic is predominantly TCP.

WAN: The optimal WAN latency measures the latency experienced by an
application from PlanetLab nodes to the closest data center of the cloud. Planet-
Lab is a distributed network of computers that is intended to be used as a research
testbed. It has over 1000 nodes and 500 sites as of June 2010. The computers in
the network belong to the research institutions and universities that are members
of PlanetLab. So, the benchmark considers PlanetLab as a typical WAN and takes
measurements from there.

Figure 10.8 shows how to model a typical 3-tier service running on Amazon
EC2 in CloudCMP. The optimal WAN latency is used to estimate the latency
from the point of access to the nearest Amazon data center. The intra-cloud net-
work statistics are next used to estimate the latency to reach the application server.
Then, the elastic compute cluster statistics are used, together with the application’s

406 CHAPTER 10 Future Trends and Research Directions

CPU requirements, to estimate the performance in the frontend server tier. Simi-
larly, the performance metrics in the application server tier can be estimated.
Finally, the persistence storage service statistics can be used to estimate the sto-
rage requirements.

CloudCmp Results
CloudCmp [20] presents the result of a comparison between AWS, Windows
Azure, Google App Engine, and CloudServers in an anonymized fashion, where
the 4 providers are listed as C1 through C4 instead of being named. The following
are some of the results presented in the paper.

Elastic Compute Cluster: CloudCmp [20] lists the instance types provided by
each provider, their cost per hour, as well as their benchmark finishing time. The
conclusion is that the price performance of the different providers varies greatly.
For example, C4.1 (the first instance type offered by vendor C4) is reported to be
30% more expensive than C1.1 but twice as fast). When comparing the cost to run
each benchmark, it was found that the smallest instance of the cloud providers was
the most cost-effective. Additionally, it was found that scaling latency was below
10 minutes for all providers, with some providers achieving latency less than 100
seconds. Linux instances were found to be created faster than Windows instances.

Persistent Storage: Table storage was tested with both a small table (1K
entries) and a large table (100K entries) for all the providers other than C2, which
did not have a table service. All table services were found to have large variations
in response time. As an example, across all the providers, the median of the

Cloud

WAN
service

Elastic compute cluster
service

WAN Frontend
server

Application
server

Database

Persistent storage
service

FIGURE 10.8

CloudCmp architecture.

Cloud Benchmarks 407

response time was 50 ms, while the 95th percentile was twice as large at 100 ms.
In terms of scaling, all the providers were found to scale well (no degradation in
response time) with up to 32 parallel threads. In terms of the inconsistency time,
all providers other than C1 were found to not have any inconsistency. C1 provided
an API option to force strong consistency which was found not to have much
impact on latency. However, without the strong consistency option, C1 was found
to have an inconsistency window of 500 ms (if the 99th percentile of inconsis-
tency times is taken). Cost per operation was found to be comparable across all
providers.

Blob download times were measured with small (1KB) blobs and large
(10MB) blobs. Again, only three of the service providers were considered, since
C3 did not offer a blob service. With small blobs, all providers other than C2

were found to show good scaling performance (up to 32 concurrent downloads),
with C4 being the best. With large blobs, C4 and C1 were found to continue to
scale better; however, C1 had the best performance. Study of the maximum
throughput suggested that in the case of both C1 and C2, the intra-cloud network
was the performance bottleneck, since the maximum achievable throughput was
close to the intra-cloud network bandwidth.

E-Commerce web site: CloudCmp [20] presents a projection of the performance
of TPC-W, a benchmark for transactional web services that uses an e-commerce site
to generate the workload. The benchmark was modified to remove JOIN and GROUP
operations, since these are not in the table service. The projection, based on
CloudCmp, predicted that C1 should offer the lowest response time. This was verified
by actually running the benchmark, which confirmed that cloud provider C1 had the
lowest response time.

Other results comparing the intra-network latency and WAN latency of the
service providers, as well as projections of their performance for various applications
such as Blast, can be found in CloudCmp [20].

END-USER PROGRAMMING
This section looks at the future of Cloud Application development – that of an
end user becoming a developer of applications! In Chapter 3, it was stated that
the value of the Web to end-users would be greatly increased if end-users could
integrate the data and services found on the Web to create new, more meaningful
services. Examples of this include a user planning a vacation, who may want
information on available flights and hotels [21]. Furthermore, the user may want
to monitor the Web for changes in flight timings and prices in order to take
advantage of favorable changes.

If end-users are to be able to develop their own programs for utilizing Web
data, the programming systems must be easy to understand, learn, use and teach
[22]. End-User Development [22] categorizes end-user programming (EUP)
systems into two categories.

408 CHAPTER 10 Future Trends and Research Directions

• The first category is the parametrization or customization category – into this
fall systems that allow users to choose among alternate behaviors that are built
into the application, such as setting email filters.

• The second category consists of systems that allow program creation and
modification. This category includes programming by example, visual
programming, and macros.

Since both parametrization and macros (such as in Microsoft Excel) are well
known, in the rest of this section, the other two sub-categories – programming by
example, and visual programming – are discussed.

Visual Programming
Visual programming refers to development tools that allow the development of
programs by visual means, typically by connecting boxes that represent
pre-defined programming functionality. Such tools facilitate the development of
programs by non-programmers. In Chapter 5, Paradigms for Developing Cloud
Applications, mashups and Yahoo Pipes, which are typical examples of visual
programming, were described in detail.

Programming by Example
Programming by example is a very popular technique in EUP. Under program-
ming by example, a user provides examples of the type of search or procedure
desired, and the system generates a procedure to perform this type of computation
[22]. Two research projects are described in the rest of this section which illustrate
this approach. First, the HP Labs TaskLets project [23] uses programming by
example to help users generate widgets that can perform complex tasks on mobile
devices with limited computing functionality. Koala, the second project, uses a
combination of programming by example and natural language processing to
enable non-programmers to write computer scripts that capture business
workflows.

TaskLets
Widgets have become a very popular way to access the Internet from mobile
phones. A mobile widget generally is designed to run on smart phones that have
limited display and input capabilities. The widget accepts simple text input,
accesses information available on the Internet, and displays the desired result.
A typical widget may input a bank account number, access the bank’s web site,
navigate to the account balance, and display it as simple text. The advantage of
mobile widgets is that it is not necessary to maintain a parallel web site for mobile
devices, and the web pages already developed for PCs can be leveraged.

Geetha et al. [23] define a concept called TaskLet to represent a user’s perso-
nal web interaction pattern. To create a new TaskLet, all the user needs to do is
to demonstrate the task (Web interaction) once using her web browser by giving

End-User Programming 409

some sample inputs on all the relevant web sites. This sequence of Web interactions
needed to perform the Web task is modeled within a TaskLet. A TaskLet captures a
user’s preferred way of accomplishing a Web task – compressing the sequence
of Web actions needed to perform a specific task in a user-specified way. These
TaskLets can be user-created, shared, customized and composed with other
TaskLets and web services (such as language translator, text summarizer).

So the TaskLets provide a framework to allow end-users to create the desired
widget, so that end-users with mobile phones can create widgets to access any
desired web site, and also widgets that may synthesize information from multiple
web sites. A number of challenges need to be addressed for achieving this objec-
tive. The first challenge, of course, is program synthesis, or the method by
which a user can create a personal widget. The second is that the synthesis
method must be resilient to change, since web pages may change (e.g., by the
addition of new security methods, or by reformatting). In that case, it is desirable
that the widget not perform erroneously, and for the user to not have to rewrite
the widget. Additionally, users who create a widget may wish to share it with
others, and it is necessary to ensure privacy for any personal data (e.g., userids)
stored in the widget. Finally, mobile connections are also prone to disruption, so
it is necessary for the framework to provide robust disconnection management
support. Description of the solution proposed in End User Programming of Task-
based Mobile Widgets [24] follows.

Figure 10.9 illustrates the various phases of the lifecycle of a TaskLet. Consider
the case of a user who wants to develop a TaskLet that will display their bank bal-
ance on their mobile phone. This can be accomplished using the TaskLet authoring
tool (browser plug-in) as follows:

First, the user hits the “record” button in the TaskLet authoring tool and then
performs the web action for checking the bank balance, i.e., the user can logon to
the web site of his bank, go to the web page that contains the bank balance, and
indicate to the TaskLet system that the bank balance is the quantity of interest.
The TaskLet system then creates a TaskLet for performing the same actions,
which is stored in the TaskLet Repository. At a later time, when the user does not
have access to a PC, the user can invoke the previously created TaskLet from
their mobile phone. The invocation can be via SMS, the Internet, or even via
voice. After the TaskLet is invoked, it will display the bank balance on the mobile
phone. The task need not be a simple task like the previous task; it may be a
complex task such as booking a 2-day trip from Bangalore to Delhi by a favorite
airline, and then reserving a room at a favorite hotel using a credit card. The inter-
nal details of these steps are described in more detail in the following paragraphs.

TaskLet creation overview: The first step in the TaskLet lifecycle is TaskLet
creation. As stated previously, the user performs the desired task on the Web
using a browser on a PC. The TaskLet system records the user actions, and ana-
lyzes them together with the web pages on which the actions were performed.
The analysis generates the semantics of the user actions in the form of a script,
called a TaskLet Template Script (TTS). The TaskLet is then parametrized and

410 CHAPTER 10 Future Trends and Research Directions

stored in the TaskLet repository hosted as an SaaS. It can then be invoked from
the mobile device, to perform the desired action.

User action recording: The details of the TaskLet creation process are shown
in Figure 10.10. As shown, the first step is to record the user’s actions. This is
done by a browser plug-in, which has a record button to start and stop recording.
After the final page containing the content of interest is reached, the user selects
the contents to be displayed after TaskLet execution by double clicking. Consider
the case where the user wants to develop a TaskLet to look up his bank balance.
After logging on, and reaching the web page containing the bank balance, the
user can double click on the bank balance. When the TaskLet is finally executed
on the mobile device, the TaskLet will log on to the bank, navigate to the page
with the bank balance, extract the bank balance, and display it on the mobile
device. If other results are desired (for example, details of the last transaction) it

Map Trigger

My
repository

Sharing,
adaptation

Registration

Result

TaskLet Invocation TaskLet execution

User intent

Instantiation

TaskLet
engine

User
context

Web
tools

T
T

T

TT

T

T

T

T
T

T

TT

T

T

T

TaskLet
URL

TaskLet creation

Customize

User action
analysis

User actions
on web

sites

Analyze web site
structure &
semantics

Capturing user-defined
web interaction patterns

TTS

Web
site 1

FIGURE 10.9

TaskLet life cycle.

Browser
plug-in

Cleaning and
templatization

User
parameterization

Action
optimization

User model

TaskLet

Web site model

TaskLet
generator

B
A
R

T
T
S

FIGURE 10.10

TaskLet authoring.

End-User Programming 411

is possible to double click on this as well; both the bank balance and last transaction
will then be displayed after TaskLet execution.

It is also possible to select and display information on multiple web pages. In
the more complex travel reservation example given earlier, the information of
interest may be the confirmation number for the airline reservation (available on
the airline reservation page) as well as the hotel confirmation number. If the user
selects both these numbers on the appropriate web pages, they will both be dis-
played when the user executes the TaskLet from his mobile device.

TaskLet generation: The recorded user actions are stored in a Browse-
Action-Recording (BAR) file. The BAR file also contains details of the fields to
be extracted. The TaskLet authoring service parses and analyzes the BAR file to
create a recording template. The template script contains browser actions with
variables replacing the inputs used during recording. In addition to form inputs,
the variables may also be hyperlink selections. During this process, the user is
asked to specify the properties of the variables, and also which variables are input
parameters. For example, in the travel scenario, the user will be asked do you
want to change the flight ‘date’, ‘destination’ in every run? An answer of yes will
result in the appropriate variable being classified as an input parameter (and asked
for as input during TaskLet execution). The privacy settings of each of the vari-
ables (e.g., credit card number) are also input.

After the TaskLet is created, it is stored in the TaskLet Repository (TLR), a
cloud hosted repository of web tasks. Each TaskLet is assigned a unique URI
with which the user task can be repeated. It is, therefore, a web object like any
other, and can be shared, annotated or “invoked” from any device. The TLR also
allows TaskLets to be shared with other users needing the same functionality.

EXAMPLE TaskLet Template Script with Authentication
1. GOTO URL=http://lib.hpl.hp.com/
2. HYPERLINK POS=1 TYPE=A ATTR=TXT:ACMDigitalLibrary
3. INPUT POS=1 TYPE=TEXT FORM=NAME:emp ATTR=NAME:UID CONTENT={{EMP_ID}}
4. SUBMIT POS=1 FORM=NAME:emp ATTR=NAME:ACTION
5. INPUT POS=1 TYPE=TEXT FORM=NAME:qiksearch ATTR=NAME:query CONTENT=
{{TITLE}}
6. SUBMIT POS=1 TYPE=IMAGE FORM=NAME:qiksearch ATTR=NAME:Go
7. EXTRACT HREF POS=1 TYPE=A ATTR=TXT:*Pdf*

TaskLet templates: The previous code snippet shows an example of the TTS
for a TaskLet that accesses the HP Labs Research Library (not a public web site)
to accept as input the title of a paper, and return the URL of the paper after
authentication with the HP employee id. Each line in the script consists of an
opcode followed by a number of operands. The opcode represents the action to
be performed (e.g., GOTO a URL), while the operands are the parameters. The vari-
ables {EMP_ID} and {TITLE} represent the employee id (which is used for authen-
tication), and the title of the paper being searched for, respectively. Since the title
is the only input in this TaskLet (the employee id being fixed) it is asked for on
every TaskLet invocation, while the employee id is constant. A similar script for

412 CHAPTER 10 Future Trends and Research Directions

accessing the text directions from Google Maps is shown next. It may be noted
that these code snippets are not written by developers but are automatically gener-
ated by the authoring tool, when the user does programming by just browsing.

EXAMPLE TaskLet Template Script for Google Maps
1. GOTO URL=http://maps.google.com/
2. HYPERLINK POS=1 TYPE=A ATTR=TXT:GetDirections
3. INPUT POS=1 TYPE=TEXT ATTR=Id:d_d CONTENT={{SRC_VAR}}
4. INPUT POS=1 TYPE=TEXT ATTR=Id:d_daddr CONTENT={{DEST_VAR}}
5. SUBMIT POS=1 FORM=ACTION:/maps ATTR=ID:d_sub
6. EXTRACT TXT POS=1 ATTR=CLASS:altroute_info&&TXT:*

TaskLet execution: Details of TaskLet execution are shown in Figure 10.11.
The TaskLet, which is stored in the TLR (owned by the mobile service provider,
for example) is first invoked by the user from his mobile device. This happens over
SMS, the Internet, or potentially even via voice. Next, the TaskLet Execution
Engine (TEE) creates a new instance of the TaskLet and executes it. As part of the
execution, the TaskLet asks for any user input needed. The TEE also attempts to
compensate for changes to web sites. Recall that the TTS script contains opcodes.
These opcodes may be syntactic or semantic. In the case of a syntactic opcode, the
operands are used exactly as is. For example, in the case of the syntactic opcode
GOTO, the TEE accesses the URL as specified by the operand. However, in the case
of a semantic opcode, such as HYPERLINK, if the attempt to access the specified
URL fails, the TEE will attempt to find a semantically equivalent URL (such as
substituting the word “astrology” for horoscopes). Semantic equivalence is applied
to extracted fields from web pages as well. Details can be found in End User
Programming of Task-based Mobile Widgets [24].

CLOUD AT THE CENTER OF THE SOLUTION
• Web tasks in the Cloud
• Browser-based authoring
• Pay-per-use
• No infrastructure setup needed
• End-User App Repository
• Multi-device access
• Works on existing web portals and cloud services

Use of Cloud in TaskLet solution
Though not explicitly mentioned in the description, cloud computing forms the core of
the TaskLet solution. First of all the TaskLet repository resides completely in the
Cloud. The TaskLet authoring tool also runs as a cloud service and is accessible from a
browser. Since TaskLet execution also happens in the cloud, it is possible to create a
business model around TaskLet execution that caters to a pay-per-use pricing. Further,
different types of thin clients (diverse mobile phones) can be used to invoke TaskLet
in the Cloud and access the short TaskLet results after executing a complex web task.

End-User Programming 413

CoScriptor
CoScriptor [25, 26] is a system that is intended to allow users to capture details of
business processes in an enterprise as scripts that can be edited and customized by
users. CoScriptor relies upon an approach called sloppy programming. Under
this approach, users write scripts in a human-understandable language to perform
tasks of interest. By not requiring the scripts to be written in a programming
language with rigid syntax, CoScriptor attempts to enable non-programmers to
write and edit scripts as well. The CoScriptor interpreter attempts to analyze the
script as a sequence of expressions composed of keywords that specify an action,
and attempts to perform the corresponding actions. CoScriptor also allows users to
record the actions to be performed, instead of writing it down. These ideas are
described in more detail using an example from Koala [26].

CoScriptor use case: In this example, an employee called Tina wanted to use
the company’s online ordering system to order a pen that was not listed in the
online catalog. In order to help her, a colleague had emailed her instructions on
how to order video cassettes, which also were not in the catalog. The code snippet
for the same is shown next.

Example CoScriptor Script
1. go to https://www.buyondemand.com
2. scroll down to the “Shop by commodity” section, click “View
commodities”
3. from the list of commodities, select “MRO/SUPPLIES”
4. …

5. the resulting screen is entitled “Full Buyer Item”. For “Item
Description” enter “MiniDV digital videotape cassette, 60 minutes at SP
mode”. For “Estimated Unit Price” enter “3.25”. For “quantity” enter how
many you want.
6. …

In fact, CoScriptor also uses programming by demonstration as a supplemen-
tary method for editing – when the CoScriptor engine encounters an error

Register

Share

Adapt

Search

(a) TaskLet repository (b) TaskLet execution environment

URL-based
TaskLet
trigger

User data

TaskLet
execution

engine

Change
handler

Post
processing

T

T

T

TT

T

T

T

T

Existing
web sites
+ services

FIGURE 10.11

TaskLet execution.

414 CHAPTER 10 Future Trends and Research Directions

command, it opens a browser for the user to show how to execute a natural
language command in the script.

First CoScriptor goes to the web site. CoScriptor then attempts to execute the
second step starting scroll down. It ignores the phrase starting scroll down, finds a
link labeled “View commodities”, and attempts to follow it. While executing this
step, both the corresponding step in the script as well as the link “View commod-
ities” are highlighted in order to let the user (Tina in this case) know the step that is
about to be executed. When step 5 is reached, CoScriptor halts, since it assumes
that any instruction with the word you indicates that a user action is needed.

The prior example demonstrates the key feature of how CoScriptor uses con-
cepts from programming by demonstration to enable end user programming.
Though the TaskLet approach is much simpler for the user to use, the script
language used by CoScriptor is in natural language and may appeal to a good
fraction of the user community as well.

OPEN CIRRUS7

Open Cirrus is a testbed for research and innovation in cloud computing. The goal
of Open Cirrus is to foster system research around cloud computing, expose the
research community to enterprise/industry level requirements, provide realistic
traces of cloud workloads, and more importantly, to provide vendor-neutral open-
source stack and APIs for cloud research, and provide an overall ecosystem for
cloud services modeling.

The Open Cirrus community initiative grew out of a discussion between HP,
Intel, and Yahoo! in early 2008. At the time of the writing of this book, the com-
munity consisted of 14 geographically distributed sites (see Figure 10.12), each
donating at least 1,000 cores and accompanying memory and storage [27]. Each
site is managed independently and the overall testbed is therefore a federation of
heterogeneous sites. This was a design choice made initially to enable more
comprehensive research in cloud services and, in particular, management.

Open Cirrus envisions that, just like Internet today, the future of cloud com-
puting will consist of multiple cloud providers contributing to a seemingly single
ubiquitous cloud from which users can get computation and storage, as well as
many services. From today’s state of the art to this vision, there are numerous
research questions that need to be addressed and technologies developed. Open
Cirrus was created to help with this kind of research.

Process of Getting onto Open Cirrus
The process for using Open Cirrus is simple and automated. Nodes can be
obtained from a self-service tool that can allocate nodes on an hourly basis. The
tool also allows selection of the operating system, specific machines and has a

7Contributed by Dr. Dejan Milojicic, Hewlett-Packard Labs, USA.

Open Cirrus 415

more sophisticated user interface for searching for machines with consecutive static
IP addresses, types of machines, system administrator views, etc. The ultimate goal
of the hourly allocation is to enable increased sharing. A typical use case is
a request for a large number of cores (up to a thousand) for a short amount of time,
during which scalability, performance, reliability, and functional testing can be
conducted and then machines passed to other users.

The process for becoming an Open Cirrus site entails ensuring that the site will
have at least 1,000 cores available for conducting Cloud computing research and that
it will make a fraction thereof available for other sites and other users. In addition, an
agreement is signed with Open Cirrus sponsors to address legal situations in case
attacks are staged from any of the sites. Export and privacy rules are also addressed.
Beside the process for obtaining Open Cirrus nodes, there is also community build-
ing, which involves conducting monthly meetings (replicated for two regions) and
bi-annual summits. Summits became IEEE sponsored and usually feature a plethora
of research from many areas of cloud computing and from researchers across many
continents. The second summit in 2011, in Atlanta, Georgia, will emphasize cross
Open Cirrus site services. For example, the BookPrep service will be showcased, run-
ning across the sites in Palo Alto, Georgia Tech, KIT, CMU, MIMOS, and ETRI.

Management of Large Scale Cloud Research Tests
Several research projects in areas such as networking, sustainability, exascale
computing, storage, service composition, and security are using Open Cirrus. Some

FIGURE 10.12

Distribution of Open Cirrus nodes and partners.

416 CHAPTER 10 Future Trends and Research Directions

of these projects require access to the hardware or the systems software of the
underlying machines and therefore they would need to expose physical machines to
the users. This is in contrast to typical cloud computing, where virtual machines are
made available to users. Several administrative tools/services are needed to support
the maintenance of the resources at the physical level. The remainder of this section
will address some of these services, in particular the Cloud Sustainability Dash-
board and Node Reservation System as examples of the requirements for a novel
management framework for a Research Cloud Computing Testbed.

Figure 10.13 describes architectural components of an Open Cirrus site (Open
Cirrus Cloud Computing Stack and global services), as well as the kinds of
research it is currently being used for at HP Labs. Open Cirrus enables a consoli-
dated infrastructure of credible scale for conducting experiments, as well as conso-
lidated users. At the bottom of the stack, the networking research can get traces
from the testbed, followed by hardware designers who can understand require-
ments and behavior of cloud services, followed by management research, which
can better understand typical processing, memory, storage stack, followed by ser-
vices research, etc.

This type of testbed needs to change and allow interposition at different levels
of the stack, such as making changes to the wiring (networking), operating system
(hardware research), default monitoring configurations and scheduling. This conse-
quently requires provisioning of both virtual machines and physical nodes for the
user. The former is the usual case in cloud computing, while the latter is typical
of systems research, such as Emulab. The second requirement for heterogeneity
support is catered from the cross-regional, global testbeds. However, these regions
(America, EU, Asia-Pacific) have different privacy and export rules as noted in
Chapter 7, so there is a need for human verification of the users prior to being
allocated resources. The third requirement derives from the previous one, which is
the need for federation. Federation is accomplished at multiple levels, first at the

Virtual machine
Virtual machine

Virtual machine

High-performance
computing research Cloud management

research

Scheduling, capacity
planning research

Sustainability
research

Exascale hardware
research

Networking
research

Storage
research

Security
research

Cloud services
research

Services
marketplaces

research

Physical machine

Virtual machine

Virtual machine

Hadoop

G
lo

ba
l s

er
vi

ce
s:

 s
ig

n-
on

m
on

ito
rin

g,
 s

to
re

, e
tc

.

VM provisioning

Physical provisioning

FIGURE 10.13

Open Cirrus node architecture.

Open Cirrus 417

security level, through the global sign on (as well as other services, such as global
monitoring); next at the physical provisioning level (by extending the node reser-
vation system), the virtual provisioning level (by federating Eucalyptus and even-
tually Tashi), and finally at the individual services level. A few key tools
developed for Open Cirrus for resource allocation (Node Reservation System),
scalable monitoring of different metrics, and a sustainability dashboard for energy
and other resource usage are described next.

Node Reservation System
While cloud computing promises unlimited resources, in practice every cloud pro-
vider has a limited stock of hardware, which it shares among the users. In the case of
a research testbed, the limits are obvious. A typical Open Cirrus site has at minimum
1,000 cores, so overall the testbed has slightly above 15,000 cores. Many research
experiments require a significant number of cores to conduct experiments. The node
reservation system provides users with reserved (guaranteed) access to a requested
hardware configuration of desired configuration (via a built-in search for specific
resources) and at a requested time. Furthermore, this is a tool (Figure 10.14) that

FIGURE 10.14

Node reservation system GUI.

418 CHAPTER 10 Future Trends and Research Directions

enables federation at the physical node level, by enabling users to request
machines from other Open Cirrus sites. This node reservation service meets all
requirements (physical provisioning, heterogeneity, and federation).

Scalable Monitoring System
Monitoring is another key service needed to gain insights into the cloud infra-
structure. The monitoring infrastructure needs to be continuous and on-demand to
quickly detect, correlate, and analyze data for a fast reaction to anomalous beha-
vior in the cloud. A key challenge is to deal with the huge volume of monitoring
data that would be produced across multiple nodes and virtual instances. In addi-
tion, the monitoring data is collected at multiple levels of the stack – physical
platform, virtualization, OS, and application layers – and thus the analysis needs
to perform correlation of multiple metrics. Traditional approaches using centra-
lized and reactive data collection, aggregation and analysis across datacenter sub-
systems and machines will not be able to scale to millions of cores. A scalable
monitoring infrastructure is being experimented on at HP Labs Open Cirrus site
that does analysis in a distributed manner (see Figure 10.15) using a computation
graph structure. The architecture scales up and down and is configurable based on
local optimizations. One example of analysis performed is anomaly detection.
Considering the online nature of the service, the anomaly detectors execute light-
weight statistical methods that raise alarms based on metric distributions [28].

Cloud Sustainability Dashboard
The Cloud Sustainability Dashboard is another global service that exemplifies
the needs of systems research (see Table 10.2). It collects various information
about the resources used, aggregates the information at the individual site level as
well as across sites and reports to the site managers/owners and potentially to
users who want to be sustainability aware about the underlying cloud where their
services execute. Again, this service meets the requirements for the physical and
virtualized access, for heterogeneity (different sites have different interfaces for
integration) and federation.

OPEN RESEARCH PROBLEMS IN CLOUD COMPUTING
This section details the author’s views of some of the major research challenges
that are yet to be addressed in Cloud Computing.

At the IaaS and PaaS layers, enabling configuration, build and deployment in a
complete self-service mode while supporting multiple tenants and providing a
view of elastic and scalable infrastructure is not a trivial task. Novel middleware
architectures and policy management algorithms to ensure satisfaction of SLAs
are still needed. Appropriate resource modeling with reflection (self-awareness)

Open Research Problems in Cloud Computing 419

Zone
Leader

Zone
Leader

Zone
Leader

Zone
Leader

Zone 1
(centralized
configured)

Zone 3
(peer to peer
configured)

Mon
Broker

Mon
Broker

Mon
Broker Mon

Broker

Mon
Broker

Mon
Broker

Mon
Broker

Zone 2
(hierarchically

configured)

Mon
Broker

Mon
Broker

Mon
Broker

Mon
Broker

Mon
Broker Mon

Broker

DC

Mon
Broker

Mon
Broker

DC
DC

DC
DC

DC
DC

DC - Data Collections

- Monitoring Broker

- Zone Leader

DC

DC
DCDC

DC
DC

DC
DC

Mon
Broker

FIGURE 10.15

Scalable monitoring and analysis system.

Table 10.2 Cloud Sustainability Dashboard

Open
Cirrus
Site

Economical ($) Ecological Social

IT Cooling Ntwk Support Econo.
Overall

CO2
(tonnes-
eq)

water
(mill.
Gal)

Resource
Use
(GJ-eq)

Ecolog.
Overall

State
of
Devt.

Risk
of
Instability

Social
Overall

Site 1 $0.72 $0.35 $0.16 $0.43 Good 6.0 2.6 83 Good High Low Poor

Site 2 $1.27 $0.59 $0.21 $1.11 Poor 6.8 3.3 96 Fair High Very Low Fair

Site 3 $1.05 $0.47 $0.12 $1.07 Poor 5.9 2.3 81 Good High Low Poor

Site 4 $0.75 $0.35 $0.12 $0.61 Good 6.1 2.7 85 Good High Very Low Fair

Site 5 $0.27 $0.13 $0.05 $0.09 Good 4.3 2.4 59 Good Low High Poor

Site 6 $1.82 $0.77 $0.11 $1.17 Poor 10.2 4.3 142 Poor High Low Poor

Site 7 $1.23 $0.54 $0.11 $0.98 Fair 15.0 4.4 192 Poor High Low Poor

Site 8 $0.55 $0.26 $0.10 $0.16 Good 6.9 2.6 95 Fair Med. Low Fair

Site 9 $1.01 $0.44 $0.10 $0.83 Fair 5.3 2.5 74 Good High Very Low Fair

capabilities to support self-scaling and self-management is needed. Scalable
management and orchestration of server, storage and network resources without
affecting the cloud user are really a challenge.

For example, the concept of application containers, though prescribed in some
standards (CDMI) and used in some research efforts [29], enables a cloud user to
use the system without bothering about hardware failures and software upgrades.
Optimization algorithms for intelligent placement of these containers on the
vendor’s Cloud infrastructure are also attractive research question.

It is also not easy to build efficient cloud-enabled applications that take
advantage of the scalability, reliability and agility provided by the cloud platform.
There is also a scope to develop application frameworks that enable rapid creation
of efficient cloud applications. Novel applications of Cloud Computing leveraging
the always-connected nature of the infrastructure, as well as potential usage
in mobile environments, promise to be very interesting. Context awareness of
mobile applications is very critical to deliver a good personalized user experience.
So, a standard means of communicating the user context to the cloud vendor
becomes important as well.

As seen in the Sustainability Dashboard of Open Cirrus, cloud platforms in
future are likely to start billing the usage based on power consumption! This
opens up research opportunities not just in the cloud platform but also in cloud
applications to build power-efficient applications, algorithms and platforms.
Models, tools and metrics for ensuring energy efficiency at the platform level as
well as the overall application level are needed.

Again as exemplified by Open Cirrus, many cloud platforms will need to be cre-
ated in collaboration and partnerships and hence the challenges of resource aggrega-
tion from multiple diverse cloud providers creates some interesting problems, not
just for management but also for resource provisioning. Novel architecture models
to support this aggregation, brokering algorithms for performance, proximal schedul-
ing, high availability and energy efficiency are possible.

Privacy, security and trust management at IaaS, PaaS and SaaS are yet to be
solved completely. This becomes even more challenging when the security and
privacy needs to be provided not just between a cloud vendor and cloud user, but
also across multiple cloud providers that have aggregated resources for a common
vendorship.

From a programming perspective, since MapReduce and Hadoop have gained a lot
of popularity, converting a traditional algorithm or application into the MapReduce
paradigm is suitable for an intern project. In fact, there is still no formal method to
determine MapReducibility of algorithms and applications [30]. Very little work has
been done on the theoretical foundations for MapReduce as well.

It would be interesting to look at other novel programming models that
enabled creation of more efficient applications. For example, approaches to design
applications given that things are going to break (design for failures or resiliency)
and creating a programming paradigm for the same would be interesting to look
at. New programming languages may evolve out of that.

422 CHAPTER 10 Future Trends and Research Directions

There are many blogs [31] and articles [32] written on open research items in
Cloud Computing that the reader can refer to. Also, the different cloud technolo-
gies and case studies described in all the chapters of this book will be very handy
to get started in trying to solve any of these research problems.

SUMMARY

In this chapter, various research directions in cloud technology have been
described. The first two sections deal with efforts to reduce lock in to a cloud
vendor in different ways. The first section deals with cloud standards, which help
to reduce vendor lock-in by standardizing cloud APIs and models, so that migra-
tion from one cloud provider to another or back to a private cloud would be sim-
pler. The second section deals with benchmarks, which allow customers to assess
which cloud vendor is better suited for their application. In the Emerging Stan-
dards section, it can be seen that different standards organizations are trying to
standardize different aspects of cloud services. Some of the important efforts are
the SNIA CDMI standard, which is an effort to standardize storage services and
applications, the DMTF’s Cloud Incubator Standards on standardizing cloud man-
agement, the IEEE’s draft standards on interoperability between different clouds,
as well as the Open Grid Forum’s cloud standards. It can be seen that though
these standards efforts deal with different aspects of cloud technology, there is
still some overlap. As of this writing, it is difficult to state which effort is likely
to get greater acceptance.

Benchmarks can be used for comparing various cloud systems, tuning and
configuring cloud systems, as well as for capacity planning. The benchmarks
described in this chapter can be used for all three purposes. Similarly to the stan-
dards, it can be seen that they cover different aspects of cloud computing. The
Cloudburst benchmark attempts to estimate the cost of running an application on
the cloud by running a standard cloud application and taking detailed measure-
ments which can be used to estimate the cost per transaction of the application.
The disadvantage of this approach is that the Cloudburst application supplied may
not be similar to the application the cloud customer is interested in. This can
make extrapolation of the results obtained problematic. The Yahoo Cloud Storage
Benchmark attempts to measure various aspects of the storage infrastructure in the
cloud. It is tunable and can be used to simulate the storage requirements of any
application. Finally, the CloudCmp benchmark makes standard measurements of a
cloud infrastructure and attempts to project the performance of any application
running on the infrastructure using a simple model of the application. The disad-
vantage of this approach is that the accuracy of the model is difficult to estimate.

The next section on end-user programming focused on technologies for
enabling non-programming users to write programs that can combine information
from various parts of the web to synthesize new uses. An example is that of a travel
reservation, where it is necessary to book the room at a hotel as well as a flight.

Summary 423

The importance of such technologies arises from the fact that, without them, while
cloud computing will lead to optimization of data centers, users will not be able
to use the cloud to its full potential by synthesizing the information on the Web.
In this section, a description of such technologies, particularly programming by
example was presented. TaskLets, a framework whose objectives are to facilitate
building of mobile widgets for performing complex operations on the Web, were
described in detail. Finally, Open Cirrus, a research cloud at HP, was described,
together with a description of some of the important research projects in progress.
The chapter concluded with a list of research challenges that are yet to be
addressed before Cloud Computing becomes the global mainstream computing
methodology.

References
[1] Cloud computing scenarios: 2010 and beyond, By Diptarup Chakraborti, Gartner.

http://informationweek.in/Cloud_Computing/10-06-28/Cloud_computing_scenarios_
2010_and_beyond.aspx?page=2; 2010 [accessed July 2011].

[2] CDMI tutorial. http://www.snia.org/education/tutorials/2010/fall/video/carlson_
interoperable_video; [accessed July 2011].

[3] SNIA, Cloud Data Management Interface, Version 1.0, SNIA Technical Position,
April 12, 2010.

[4] http://snia.cloudfour.com/sites/default/files/CDMI_SNIA_Architecture_v1.0.pdf;
[accessed July 2011].

[5] Architecture for Managing Clouds: A White Paper from the Open Cloud Standards
Incubator, DMTF. http://www.dmtf.org/sites/default/files/standards/documents/DSP-
IS0102_1.0.0.pdf; [accessed July 2011].

[6] Draft Guide for Cloud Portability and Interoperability Profiles. http://standards.ieee.
org/develop/wg/CPWG-2301_WG.html; [accessed July 2011].

[7] Draft Standard for Intercloud Interoperability and Federation. http://standards.ieee.org/
develop/wg/ICWG-2302_WG.html; [accessed July 2011].

[8] Welcome to the httperf Homepage. http://www.hpl.hp.com/research/linux/httperf; 2009
[accessed July 2011].

[9] SPECweb2005. http://www.spec.org/web2005/; 2005 [accessed July 2011].
[10] Sucharitakul A, et al. Cloudstone: Multi-Platform, Multi-Language Benchmark and

Measurement Tools for Web 2.0 by Will Sobel, Shanti Subramanyam. http://radlab.cs.
berkeley.edu/w/upload/2/25/Cloudstone-Jul09.pdf; 2009 [accessed July 2011].

[11] Baldi P, Frasconi P, Smyth P. Modeling the internet and the web: probabilistic methods
and algorithms Wiley; 2003. 978-0470849064; [accessed July 2011].

[12] Nginx Primer 2: From Apache to Nginx, Martin Fjordvald. http://blog.martinfjordvald.
com/2011/02/nginx-primer-2-from-apache-to-nginx/; 2011 [accessed July 2011].

[13] Cooper BF. Yahoo! cloud serving benchmark. http://www.brianfrankcooper.net/pubs/
ycsb-v4.pdf; 2011 [accessed July 2011].

[14] IOzone Filesystem Benchmark. http://www.iozone.org/; 2006 [accessed July 2011].
[15] Zipf, Power Laws, and Pareto – a Ranking Tutorial. http://www.hpl.hp.com/research/

idl/papers/ranking/ranking.html; 2002 [accessed July 2011].

424 CHAPTER 10 Future Trends and Research Directions

http://informationweek.in/Cloud_Computing/10-06-28/Cloud_computing_scenarios_2010_and_beyond.aspx?page=2
http://informationweek.in/Cloud_Computing/10-06-28/Cloud_computing_scenarios_2010_and_beyond.aspx?page=2
http://www.snia.org/education/tutorials/2010/fall/video/carlson_interoperable_video
http://www.snia.org/education/tutorials/2010/fall/video/carlson_interoperable_video
http://snia.cloudfour.com/sites/default/files/CDMI_SNIA_Architecture_v1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/CPWG-2301_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://standards.ieee.org/develop/wg/ICWG-2302_WG.html
http://www.hpl.hp.com/research/linux/httperf
http://www.spec.org/web2005/
http://radlab.cs.berkeley.edu/w/upload/2/25/Cloudstone-Jul09.pdf
http://radlab.cs.berkeley.edu/w/upload/2/25/Cloudstone-Jul09.pdf
http://blog.martinfjordvald.com/2011/02/nginx-primer-2-from-apache-to-nginx/
http://blog.martinfjordvald.com/2011/02/nginx-primer-2-from-apache-to-nginx/
http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf
http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf
http://www.iozone.org/
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

[16] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud
serving systems with YCSB. Indianapolis: ACM Symposium on Cloud Computing;
http://research.yahoo.com/node/3202; 2010 [accessed July 2011].

[17] CloudCmp: Pitting Cloud against Cloud. http://www.cloudcmp.net/; 2010 [accessed
July 2011].

[18] Li A, Yang X, Kandula S, Zhang M. CloudCmp: Shopping for a Cloud Made Easy.
2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), http://
wwwcs.duke.edu/~angl/papers/hotcloud10-cloudcmp.pdf; 2010 [accessed July 2011].

[19] Li A, Yang X, Kandula S, Zhang M. CloudCmp: Shopping for a Cloud Made Easy
(Slideset), 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).
http://www.usenix.org/events/hotcloud10/tech/slides/li.pdf; 2010. [accessed July 2011].

[20] Li A, Yang X, Kandula S, Zhang M. CloudCmp: Comparing Public Cloud Providers,
Internet Measurement Conference. http://www.cs.duke.edu/~angl/papers/imc10-
cloudcmp.pdf; 2010 [accessed July 2011].

[21] Blythe J, Kapoor D, Knoblock CA, Lerman K, Minton S. Information Integration for
the Masses, JUCS2007. Also http://www.isi.edu/~blythe/papers/pdf/iiworkshop07.pdf;
2007 [accessed 08.10.11].

[22] Lieberman H, Paterno F, Klann M, Wulf V. End-user development: an emerging
paradigm. In: End user development. Springer-Verlag; 2006.

[23] Manjunath G, Thara S, Hitesh B, Guntupalli S, et al. Creating personal mobile widgets
without programming. Developer track. In: 18th intl conference on world wide web,
Spain: Madrid; 2009.

[24] Manjunath G, Murty MN, Sitaram D. End User Programming of Task-based Mobile
Widgets. HPL Tech Report, 2011.

[25] Leshed G, Haber E, Lau T, Cypher A. CoScripter: Sharing ‘How-to’ Knowledge in
the Enterprise. GROUP’07, November 4–7, 2007.

[26] Little G, Lau TA, Cypher A, Lin J, Haber EM, Kandogan E. Koala: capture, share,
automate, person-alize business processes on the web. CHI’07. 2007.

[27] Avetisyan A, et al. Open cirrus a global cloud computing testbed. IEEE Comput 2010;43
(4):42-50.

[28] Wang C, et. al. Online detection of utility cloud anomalies using metric distributions.
In: Proceedings of the 12th IEEE/IFIP network operations and management symposium
(NOMS); 2010 [accessed July 2011].

[29] Linux Virtual Containers with LXC. http://www.techrepublic.com/blog/opensource/
introducing-linux-virtual-containers-with-lxc/1289; [accessed July 2011].

[30] Hellerstein JM, Berkeley UC. Datalog Redux: Experience and Conjecture. Key Note
address; [accessed July 2011].

[31] Llorente IM. Research Challenges in Cloud Computing, Cloud Computing Journal.
http://cloudcomputing.sys-con.com/node/1662026; 2011 [accessed July 2011].

[32] Cloud Computing Roundtable. Hosted by qatar computing research institute (QCRI).
http://www.qcri.qa/wp-content/uploads/2011/06/session9-summaryAll.pdf; [accessed
08.10.11].

References 425

http://research.yahoo.com/node/3202
http://www.cloudcmp.net/
http://www.cs.duke.edu/~angl/papers/hotcloud10-cloudcmp.pdf
http://www.cs.duke.edu/~angl/papers/hotcloud10-cloudcmp.pdf
http://www.usenix.org/events/hotcloud10/tech/slides/li.pdf
http://www.cs.duke.edu/~angl/papers/imc10-cloudcmp.pdf
http://www.cs.duke.edu/~angl/papers/imc10-cloudcmp.pdf
http://www.isi.edu/~blythe/papers/pdf/iiworkshop07.pdf
http://www.techrepublic.com/blog/opensource/introducing-linux-virtual-containers-with-lxc/1289
http://www.techrepublic.com/blog/opensource/introducing-linux-virtual-containers-with-lxc/1289
http://cloudcomputing.sys-con.com/node/1662026
http://www.qcri.qa/wp-content/uploads/2011/06/session9-summaryAll.pdf

This page intentionally left blank

Index

Page numbers in italics indicate figures and tables

A
access control, 287–291

in Amazon S3, 28
Azure App Fabric, 96
resource sharing, 288–291
Salesforce.com, 291–294
SDB, 50
in security, 310

access control lists (ACLs), 288
access keys

AWS, 25, 27
Windows Azure, 85

ACID guarantees, 272
ACLFeed class, 198
Action Message Format (AMF), 245
actions, OCCI, 397
ActionScript code, 238, 241
active/active failover configuration, Lustre, 366
Ad Hoc/Custom instances level, multi-tenancy, 285
Adaptable Automation Engine, RightScale, 346
Adaptive Least Usage (ALU), GlusterFS, 369
Add App Exchange App tab, Salesforce.com, 156
adjacency matrix, storing graph as, 235–236,

235–236
adjustServers method, Cloud System Matrix, 336
adjustStorage method, Cloud System Matrix, 336
administrative domains, grid computing, 379
administrative functions, Windows Azure, 341
administrator portal, CloudSystem Matrix, 55, 330
Adobe Flex. See Flex, Adobe
advance reservation, grid computing, 379
Affected Assets column, potential risk

checklist, 323
affinity groups, Windows Azure, 84
AFR (Automatic File Replication) translator,

GlusterFS, 369
after trigger, Force.com, 169
Aggregation, Cloud, 260
agility of cloud computing, 12
AJAX (Asynchronous JavaScript And XML), 239
algorithms, 232–237

breadth-first search, 235–237
Djikstra’s, 236
Elastic Hash, GlusterFS, 367
I, 279
II, 279
sorting, 233–234

Tera Sort, 233
TF-IDF, 234–235
word count, 232–233

ALU (Adaptive Least Usage), GlusterFS, 369
Amazon, failure avalanche in 2011, 18
Amazon CloudWatch, 336–339
Amazon Elastic Compute Cloud (EC2), 32–53

accessing using AWS console, 32–35
accessing using command line tools, 35–37
application-controlled auto-scaling, 51–53
Article Portal, 48–49
autoscaling using AWS Beanstalk, 51
computational resources, 37–39
on demand self-service, 9
HP CloudSystem automation suite, 53
HP CloudSystem Matrix platform, 54–55
installing command line tools, 36
networking, 41
networking resources, 41–42
overview, 32–42
Pustak Portal, 46, 51–53, 55–59
instantiation and management, 59
Matrix resource configuration, 56–58
template design for, 55–56

storage resources, 39–41
storing article metadata, 49–51
web servers, 42–46
allowing external access to, 46
attaching EBS volumes, 45–46
creating instances, 43–45
selecting AMI, 43

Amazon Machine Images. See AMIs
Amazon Relational Database Service (RDS), 23,

31–32, 116
Amazon Simple Storage Service. See Simple

Storage Service, Amazon
Amazon SimpleDB. See SimpleDB
Amazon Storage Services, 24–32

RDS, 31–32
S3, 24–30
accessing, 24–25
administration of, 28–30
buckets, 26–28
getting started with, 25–26
keys, 26–28
large object uploads, 30
multi-part uploads, 30

427

http://Salesforce.com
http://Salesforce.com
http://Force.com

Amazon Storage Services (Cont.)
objects, 26–28

SDB, 30–31
access, 30–31
administration of, 31
availability of, 31
data organization, 30–31

Amazon Web Services (AWS), 115–116
overview, 24
RDS, 116
S3, 115
SDB, 115

Amdahl’s Law, 257–258
American Institute of Certified Public

Accountants, 320
AMF (Action Message Format), 245
AMIs (Amazon Machine Images)

for auto-scaling infrastructure, 51
choosing in AWS Console, 32
for EC2 instances, 38
root, 38
selecting, 43

“Anatomy of Grid”, 374–375
AP (Available, Partition-tolerant) systems, 274–275

asynchronous replication, 277–278
data consistency in Pustak Portal, 276–277
weak consistency, 275–276, 279–280

Apache Hadoop platform, 126–136
distributed file system, 134–136
HDFS API, 135–136
MapReduce model, 128–134
overview, 127–128
running non-Java MapReduce applications, 132
architecture of, 133–134
dataflow, 132–133

Apex programming language, triggers in, 168
APIs, 195–200

See also specific APIs by name
embedding in other HTML pages, 199–200
example of, 196–197
handling disruptions in network, 197–198
Open Graph, 175–179
Picasa website, 181–183
sharing documents with mailing list, 198
Twitter website, 186–188

App Engine SDK, 108, 110, 111
App Fabric, Windows Azure, 91, 96–97, 105, 341
AppExchange, Salesforce.com, 156, 161
appliance-based network virtualization, 370–371
application configuration file, Windows Azure, 78
Application Service Providers, 384
Application_Start function, Windows Azure, 81

application-controlled auto-scaling, 51–53
applications

See also specific applications by name
availability, 298
data storage, 205–224
key-value stores, 221
MongoDB system, 222–224
NoSQL systems, 217–224
partitioning, 208–217
Pustak Portal data, 207–208
sharding, 211–217

Map Reduce paradigm, 224–237
algorithms, 232–237
computing models, 230–231
functional programming paradigm, 229–230
inherent data parallelism, 231–232
parallel architectures, 230–231
programming model, 227–229

Netcharts, 342
non-Java MapReduce, 132
architecture of, 133–134
dataflow, 132–133

overview, 205
recovery of, 298–299
RIA, 237–248
advanced platform functionality, 244–245
client-server example, 242–244
development environment, 238–239
example of, 239–241
Pustak Portal, 245–248

scaling with reverse proxies, 258–260
Windows Azure, 340–342

arbiters, MongoDB, 282
architectures

article sharing portal, 48
CloudCmp, 407
DMTF, 394, 395
Flynn’s Classification, 230–231
Force.com, 159
GlusterFS, 367–368, 368
HBase, 281
HDFS, 295
HP SVSP, 371, 372
IBM SVC, 372, 373
layered grid, 376
Lustre filesystem, 365
MapReduce, 133
MongoDB, 282
OAuth, 191
parallel, 230–231
data versus task parallelism, 231
Flynn’s classification, 230–231

428 Index

http://Salesforce.com
http://Force.com

SOA, 123–124, 390
split-path, 371
VMWare ESX 3i server, 361
XenServer, 362
Yahoo! cloud service benchmark, 402

Article Portal, 48–49
article sharing portal architecture, 48
as-create-auto-scaling command, EC2, 52
as-create-launch-config command, EC2, 52
ASP model, 285
as-put-scaling-policy command, 52
assignment rules, Salesforce.com, 157
associations, loss in round-robin partitioning, 210
Asynchronous JavaScript And XML (AJAX), 239
asynchronous replication, 276–278
ATOM feeds, Picasa, 181
attributes

Cloud System Matrix, 55
SDB, 49–50

Audit and Accountability family of security
control, 311

auditing, 310
authentication parameters for objects, 27
authentication services, Windows Azure, 103
Author URL (AURL), 65
Author VM (AVM), 65–66
Automatic File Replication (AFR) translator,

GlusterFS, 369
automatic support for sharding, 217
automatically creating cases, Salesforce.com, 156
autonomic computing, 383
auto-scaling

Amazon CloudWatch, 337
application-controlled, 51–53
policy for, 52
using AWS Beanstalk, 51

availability of cloud services, 298–301
application recovery, 299
CAP theorem, 272
challenge in cloud models, 18
failure detection, 298–299
HP Cloud Assure, 345
Librato Availability Services, 299–301
objective of cloud security, 308
SQL Azure, 340
Windows Azure, 340

availability tier, YCSB, 404
availability zones, EC2, 38
Available, Partition-tolerant systems. See AP

systems
AVM (Author VM), 65–66
AWS. See Amazon Web Services

AWS Access Key, 25, 27
AWS Beanstalk, autoscaling using, 51
AWS Management Console

accessing Amazon S3 through, 24, 25
accessing EC2 using, 32–35
for Amazon S3, 26
attaching EBS Volumes, 45–46
EC2, 33
enabling bucket logging, 29, 29
RDS instances, 31, 31
read or write access, 28
selecting AMI, EC2, 43, 43
setting user permissions, 28

AWS Secret Key, 25, 27
Azure, Windows. See Windows Azure
Azure agent, Windows Azure runtime

environment, 92
Azure App Fabric platform, 91, 96–97, 105, 341
Azure Drives, 99
Azure storage account, 84, 99
Azure subscriptions, 84

B
Baidu traffic statistics, 18
BAR (Browse-Action-Recording) files, 412
bare metal hypervisors, 353
barriers, ZooKeeper, 268–269, 271
BASE guarantees, 272
BCP (business continuity planning), 322
Beacon feature, Facebook, 174
Beanstalk, autoscaling using AWS, 51
before trigger, Force.com, 169
behavior sensitive instructions, 355
benchmark cost, CloudCMP, 406
benchmark finishing time, CloudCMP, 406
benchmarks, 398–408

CloudCMP, 405–408
architecture of, 406–407
results, 407–408

Cloudstone
components of, 399–402
overview, 399–402

uses of, 398
YCSB, 402–405
example results, 405
measurements and results, 403–405
workload generator, 402–403

BFS (Breadth First Search), 235–237
big data platform, 74
The Big Switch: Rewiring the World, from Edison

to Google, 2
BigTable architecture, 280

Index 429

http://Salesforce.com
http://Salesforce.com
http://Force.com

billing for CPU time, Windows Azure, 89
binary translation, 356
Blob service, Windows Azure, 99–100
blobs, Windows Azure, 85, 93
Block Access Tokens, Hadoop, 296
block blobs, Windows Azure, 99
block storage resources, EC2, 39, 40
block virtualization, 369–373

network-based virtualization, 370–373
HP SVSP, 371
IBM SVC, 371–373

overview, 363
Breadth First Search (BFS), 235–237
break-glass procedures, 310
broad network access, required in cloud

computing, 9
Browse-Action-Recording (BAR) files, 412
buckets, S3, 26, 26–30, 29
Builder component, Force.com, 159
bulk loading of data, Force.com, 161
Burden, Henry, 2
business continuity planning (BCP), 322
business drivers, for cloud computing, 12–13
Business Impact Analysis, 322
business rules, in access control, 287

C
CA (Consistent, Available) systems, 273
CaaS. See Amazon Elastic Compute Cloud
Caching component, Azure App Fabric, 96
Call Center web page, Salesforce.com, 154, 155
CAP theorem (Consistency, Availability, and

Partitioning-tolerance), 272–275
example of, 273–274
implications of, 274–275

capability maturity model (CMM), 316
Capability mime types, CDMI APIs, 392
capability-based access control, 288
CapacityScheduler, Hadoop MapReduce, 134
Cases tab, Salesforce.com, 154, 155
Cassandra key-value store, 221, 283–284
categorization, information resource, 312
CC (Cluster Controller), Eucalyptus, 264–265
CCM (Cloud Controls Matrix), 325
CDMI (Cloud Data Management Interface),

390–393
CDMI APIs, 392–393
CDN (content distribution network), Windows

Azure, 85
Cell Specification (CS), 60
Cells-as-a-Service technology, 59–60

cell specification, 62–64

overview, 60
Pustak Portal author web site, 126–136
isolation of multiple tenants, 66
load balancing, 67–68
multi tenancy, 64–66

web portals, 60–64
centralized authentication, 287
centralized metadata, distributed file systems with,

364–366
certificates, X.509, 36
checkin connection type, Facebook, 178
checkpoint/restart, 299–300
China, data protection laws in, 321
classes for monitoring, 341
CLC (Cloud Controller), Eucalyptus, 264, 266
client, HDFS, 295
client-server, example of, 242–244
Cloud Aggregation, 260
Cloud Bursting, 260–263, 263
cloud computing, 8–9

business drivers for, 12–13
combining with grid computing, 381
development models for, 9–11
differences with grid computing, 379–381
open research problems in, 419–423
similarities with grid computing, 379
technologies, 13–19
challenges for, 18–19
IaaS, 15–16
PaaS, 16
SaaS, 17

Cloud Computing Information Assurance
Framework from ENISA, 317

Cloud Controller (CLC), Eucalyptus, 264, 266
Cloud Controls Matrix (CCM), 325
Cloud Data Management Interface (CDMI),

390–393
Cloud Federation, 260
Cloud Incubator Standards group, DMTF, 394
Cloud Management Environment, RightScale, 345
cloud security alliance (CSA), 325–326
cloud service provider (CSP), 9
cloud service risk, 323
cloud service types, 13–19
Cloud Storage Initiative (CSI), SNIA, 393
cloud storage services, 98–101

Blob service, 99–100
interoperability, 105
queue service, 101
reliability and availability, 104
scalability, 102–103
security and access control, 103–104

430 Index

http://Force.com
http://Force.com
http://Salesforce.com
http://Salesforce.com

table service, 100–101
Cloud Sustainability Dashboard, 421
cloud time service, 309
CloudAssure system, HP, 344–345
CloudAudit, 326
CloudCMP, 405–408

architecture of, 406–407
results, 407–408

Cloud-Ready ServerTemplates, RightScale, 345
Cloudstone

components of, 399
example results, 401–402
Faban workload generator, 400
measurements and results, 400–401

overview, 399–402
CloudSystem, HP

automation suite, 53
Matrix platform, 54–55

CloudSystem Automation Suite, 53
CloudSystem Enterprise, HP, 53, 260
CloudSystem Matrix, 53, 330–336

administrator of, 331
programming example of, 332–336
self-service monitoring, 332

CloudSystem Service Provider, 53
CloudWatch, Amazon, 336–339
CloudWatch CPU alarm, 52
CLR intermediate code, 239
Cluster Controller (CC), Eucalyptus, 264–265
Cluster GPU Instance family, 38
Cluster-Compute Instance family, 38
clusters, HBase, 280
CMDB (common management data base), 314
CMM (capability maturity model), 316
COBIT (Control Objectives for Information and

related Technology), 317–318
Code Share, Force.com, 159
code view, IDE, 238
collections, MongoDB, 222
Collective Layer, Grid Architecture, 375
columns, Cassandra, 221
combine function, MapReduce, 227
command line tools, EC2

accessing using, 35–37
installing, 36

Common component, Apache Hadoop, 127
common management data base (CMDB), 314
Community cloud, 9
compliance, as downside of public clouds, 13
computational resources, 37–39
Compute as a Service. See Amazon Elastic

Compute Cloud

compute resources, sharing in multi-tenant
system, 290

Compute Service Provider (CSP), 60
Compute service, Windows Azure runtime

environment, 91–92
computing, 3–6

See also cloud computing
future evolution of, 6–8
mobile devices, 6
models of, 230–231
data versus task parallelism, 231
Flynn’s classification, 230–231

online information, 5
social networking, 3–5
Web 2.0, 3–5

Compuware system, 346–347
confidentiality of cloud system, 308
Configurable, multi-tenant efficient instances level,

multi-tenancy, 286
Configurable Instances level, multi-tenancy, 286
connection types, Facebook, 176, 176
Connectivity layer, Grid Architecture, 375
Consensus Assessments Initiative

Questionnaire, 326
consistency

CAP theorem, 272
HBase, 282

Consistency, Availability, and Partitioning-
tolerance. See CAP theorem

Consistent, Available (CA) systems, 273
Consistent, Partition-tolerant (CP) systems, 274
Consumer Portal, Cloud System Matrix, 54
containers

Azure Blob service, 99
CDMI APIs, 392

content distribution network (CDN), Windows
Azure, 85

contract negotiation, 319–320
contracts, DMTF, 394
contractual issues, 319–320

contract negotiation, 319–320
due diligence, 319
implementation, 320
termination, 320

Control Objectives for Information and related
Technology (COBIT), 317–318

control sensitive instructions, 355
Controller Service VM (CVM), 64–65
CoScriptor system, 414–415
cost (dollars) per user per month, Cloudstone, 400
cost-effectiveness

of cloud security, 308

Index 431

http://Force.com

cost-effectiveness (Cont.)
of public versus private clouds, 11, 12

countries, differing data handling laws in, 321
CP (Consistent, Partition-tolerant) systems, 274
CPL (Current Privilege Level), 354
CPU time billing, Windows Azure, 89
Create, Read, Update and Delete (CRUD)

operations, CDMI, 393
crowd wisdom, 8
CS (Cell Specification), 60
CSA (cloud security alliance), 325–326
CSI (Cloud Storage Initiative), SNIA, 393
CSP (cloud service provider), 9
CSP (Compute Service Provider), 60
CU (EC2 Compute Unit), 37
Current Privilege Level (CPL), 354
customization of data in multi-tenant system, 290
CVM (Controller Service VM), 64–65

D
DaaS (Data as a Service), 74, 123–126
DADX (Document Access Definition Extension),

124–125
dashboards

Netcharts, 342, 343
Nimsoft, 342, 344

data
blocks of, 135–136
flow for OAuth protocol, 190
handling, 320–322
inherent parallelism of, 231–232
integrity, issue with sharding, 216
location of, 321
parallelism versus task, 231
privacy, 320–321
protection, S3, 29
Pustak Portal, partitioning, 213–215
secondary use of, 321–322
storage of, 205–224
key-value stores, 221
MongoDB system, 222–224
NoSQL systems, 217–224
partitioning, 208–217
Pustak Portal data, 207–208
sharding, 211–217

theft of, 310
Data as a Service (DaaS), 74, 123–126
data fields, Force.com records, 160
Data Path Modules (DPMs), HP SVSP, 371
Data Project Explorer, IBM Data Studio, 125
data skew, 212
Data Source Explorer, IBM Data Studio, 125

Data Studio, IBM, 123–126
data types, Force.com, 160
database plug-ins, YCSB, 402
databases

changes in schema, 216–217
object, 222–224
Salesforce.com, 160–161
workloads, private versus public cloud

decisions based on, 11
data-centric features, Flash4, 242
dataflow in MapReduce, 133
DataNodes, HDFS, 294, 296
datastore service, Google App Engine, 111
data-system metadata, CDMI, 391
DB2 Express-C, 125
DB2-defined functions, 120
debugging

Force.com, 159
Windows Azure, 107

decentralized authentication, 287
dedicated tables per tenant method,

in multi-tenant system, 288, 289
delegation tokens, Hadoop, 296–297
delete statements, YQL, 147–148
denormalization, 215, 216
design view, IDE, 238
developer tools, Force.com, 159
Development Fabric, Windows

Azure, 82, 87, 98
development models, for cloud computing, 9–11
development storage, Windows Azure, 78
Diagnostics API, Windows Azure, 340
disaster recovery (DR), 322
disk configuration, Cloud System Matrix, 57
distributed checkpoint/restart, 299
distributed computing, 381–382
distributed file systems (DFSs), 364

with centralized metadata, 364–366
with distributed metadata, 366–369

distributed management task force (DMTF)
reference architecture, 394–396

distributed metadata, distributed file
systems with, 366–369

Djikstra’s algorithm, 236
DMA Remapping, 360
DNS based load balancing, 68
DNS name of instances, in AWS console, 44
Document Access Definition Extension (DADX),

124–125
documents, sharing with mailing list, 198
dollars (or cost) per user per month,

Cloudstone, 400

432 Index

http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com

Domain 12: Guidance for Identity and Access
Management, 326

Domain mime types, CDMI APIs, 392
domains

administrative, grid computing, 379
fault, 104, 340
protection, 360
SDB, 30
upgrade, 340
XenServer, 362

downloading EC2 command line utilities, 36
DPMs (Data Path Modules), HP SVSP, 371
DR (disaster recovery), 322
drives, Windows Azure, 93, 99
due diligence, 319
Dynamo, 283–284

E
EBS (Elastic Block Service), 39, 40
EBS volumes, attaching, 45–46
EBS-backed instances, 40
EC2, Amazon. See Amazon Elastic

Compute Cloud
EC2 Compute Unit (CU), 37
EC2 instance wizard, 32, 34, 34–35
ec2addgrp command, EC2, 44
ec2-create-instance command, EC2, 44
ec2-describe-instances command, EC2, 44
ec2-describe-regions command, EC2, 37
EC2-PRIVATE-KEY environment variable, 44
ec2-run-instances command, EC2, 44
Eclipse plug-in, 108, 110, 111
e-discovery risks, 323
ego-centric networks, 172
Elastic Block Service (EBS), 39, 40
Elastic Compute Cloud. See Amazon Elastic

Compute Cloud
Elastic Compute Cluster, CloudCMP, 406–407
Elastic Hash Algorithm, GlusterFS, 367
Elastic IP addresses, 41
Elastic Load Balancer, 39, 52
Elastic Utility Computing Architecture Linking

Your Programs To Useful Systems
(EUCALYPTUS), 263–266

elasticity, required in cloud computing, 9
email alerts, Force.com, 169, 170
embedding APIs in HTML pages, 199–200
encryption, Windows Azure, 103
end-user programming, 408–415

example of, 409–415
CoScriptor system, 414–415
tasklets, 409–413

visual programming, 409
ENISA (European Network and Information

Security Agency), 317, 326
entities

Facebook, 175, 176
Google App Engine, 111

environment variables
in EC2, 36
EC2-PRIVATE-KEY, 44

EPT (Extended Page Tables), 359, 359
ESX 3i server, VMWare, 361
EUCALYPTUS (Elastic Utility Computing

Architecture Linking Your Programs To
Useful Systems), 263–266

European Network and Information Security
Agency (ENISA), 317, 326

European Standards and Interoperability for
Infrastructure Implementation Initiative
(SIENA), 390

European Union (EU), data protection laws in, 321
evaluation frameworks, 325–326

CSA, 325–326
TCG, 326

event handling, Flex, 245
eventual consistency

asynchronous replication, 277
CAP theorem, 272
Google App Engine, 111
subclass of weakly consistent systems, 275

execution skew, 212
Extended Page Tables (EPT), 359, 359
external accreditation, 320
external interrupt exiting control, VMCS, 358
external network access, 315

F
Faban workload generator, Cloudstone, 399–400
Fabric Controller (FC), Windows Azure, 91–94
face recognition software, 6
Facebook, 173–179

effect on businesses, 5
formation of virtual communities through, 4
OAuth in, 191, 191–193
Open Graph API, 175–179
overview, 171
social applications on, 173–174
social plug-ins, 174–175
storage needed for, 205
traffic statistics, 18, 18

failover feature, Lustre, 366
failure detection, 298
FairScheduler, Hadoop MapReduce, 134

Index 433

http://Force.com

fault domains, 104, 340
FC (Fabric Controller), Windows Azure, 91–94
federated identity management, 96
Federation, Cloud, 260
federation services, 287
File Transfer Protocol (GridFTP), 375
file virtualization, 363–369

distributed file systems with centralized
metadata, 364–366

distributed file systems with distributed
metadata, 366–369

GlusterFS system, 367–369
Lustre system, 364–366
overview, 363

filter driver framework, VMWare VMM, 362
FIPS 200 standard, 311
Flash4, 242
Flex, Adobe

advanced functionality, 244–245
client side development, 245–248
Hello World application, 239–241
overview, 237
Rss Feed Reader, 242–244
video playback applications, 247–248, 249

Flynn’s classification, 230–231
fold operator, Haskell, 229
followers, Twitter, 185
food safety recall process, 5
Force.com

example of, 162, 166–171
Netcharts application, 342
Nimsoft product, 342
programming with, 161–171

forward proxy, 258
Foster, Ian, 374–375
functional decomposition, 209, 212–213
functional programming paradigm, 229–230

G
GameStation, 321
GDocsBar plug-in, 194
GDocsUploader for Macs, 194
GDP (Google Data Protocol), 195
geographic regions, in Amazon S3, 30
geographically distributed scenario, 276, 278
Geotagging API, Twitter, 187
GetMessage() function, Windows Azure, 79–81
GIIS (Grid Information Index Servers), 375
Globus toolkit (GT), 375, 377, 378
GlusterFS system, 367–369
Google

open social platform from, 188

traffic statistics, 18
Google App Engine, 108–114

developing and deploying on, 108
developing applications, 108–111
overview, 108
using persistent storage, 111–114

Google Data Protocol (GDP), 195
Google Docs application, 193–200

APIs, 195–200
embedding in other HTML pages, 199–200
example of, 196–197
handling disruptions in network, 197–198
sharing documents with mailing list, 198

using portal, 193–194
Google Web Toolkit (GWT) application, 110
GRAM (Grid Resource Access and Management)

protocol, 375
Graphic Processing Units (GPUs), 38
Grid Architecture, 375
grid computing, 374–381

characteristics of grids, 374–375
cloud computing versus, 378–381
combining, 381
differences, 379–381
similarities, 379

grid projects, 378
grid technologies, 375–378
overview, 374–375

Grid Fabric layer, 375
Grid Information Index Servers (GIIS), 375
Grid Resource Access and Management (GRAM)

protocol, 375
Grid Resource Information Protocol (GRIP), 375
Grid Security Infrastructure (GSI protocol),

Globus, 375
GridFTP (File Transfer Protocol), 375
grids

characteristics of, 374–375
projects, 378
technologies, 375–378

GT (Globus toolkit), 375, 377, 378
guest physical addresses, 358
guest virtual addresses, 358
GWT (Google Web Toolkit) application, 110

H
Hadoop Distributed File System. See HDFS
Hadoop platform, Apache, 126–136

distributed file system, 134–136
HDFS API, 135–136
MapReduce model, 128–134, 300
overview, 127–128

434 Index

http://Force.com

running non-Java MapReduce applications, 132
architecture of, 133–134
dataflow, 132–133

Haizea Lease Manager, 263
hardware failures, 18
hardware support, 356–361

for I/O virtualization, 360–361
memory, 358–360
processors, 357–358

hash partitioning, 211, 211
Haskell functional programming language, 229
Hbase framework, Apache Hadoop, 127
HBase replication, 280
HBase technology, 217–221, 280–282
HDFS (Hadoop Distributed File System), 127

architecture, 294–296
security, 296–297

HDFS API, 135–136
Health Insurance Portability and Accountability

Act (HIPAA), 318
heartbeats method of failure monitoring, 298
Help fields, Force.com records, 160
Heroku, 323
high impact systems, 311
High-CPU Instance family, 38
High-Memory Instance family, 38
High-Performance Compute (HiPC)

applications, 38
Hive framework, Apache Hadoop, 127
HLog, HBase, 281
HMaster servers, 220, 280
Hollywood Stock Exchange (HSX), 8
home page, Google Docs, 193, 194
honeypots, 313
horizontal hybrid models, 11
horizontal partitioning, 210
horizontal scaling, 256
hosted hypervisors, 353
Hosted Service Portal, Windows Azure, 88
hosted service, Windows Azure, 84, 85
HP CloudAssure system, 344–345
HP CloudSystem

automation suite, 53
Matrix platform, 53–55

HP CloudSystem Enterprise, 260
HP SiteScope, 332
HRegion servers, 280
HSX (Hollywood Stock Exchange), 8
HTML pages, embedding APIs in, 199–200
HTTP-redirection, 299
HTTPService, Flex, 243–244
HVM mode, XenServer, 362

hybrid cloud, 9, 260–263
hybrid hypervisors, 353, 354
hypervisors, 361–363

hybrid, 353, 354
overview, 353–354
types of, 353–354
VMware, 361–362
XenServer virtual machine

monitor, 362–363

I
IaaS (Infrastructure as a Service), 15–16

Amazon Storage Services, 24–32
RDS, 31–32
S3, 24–30
SDB, 30–31

Cells-as-a-Service technology, 59–60
cell specification, 62–64
overview, 60
Pustak Portal author web site,
126–136

web portals, 60–64
EC2, 32–53
application-controlled
auto-scaling, 51–53

Article Portal, 48–49
autoscaling using AWS Beanstalk, 51
HP CloudSystem automation suite, 53
HP CloudSystem Matrix platform, 54–55
networking, 41
overview, 32–42
Pustak Portal, 46, 51–53, 55–59
storing article metadata, 49–51
web servers, 42–46

managing, 330–339
Amazon CloudWatch, 336–339
CloudSystem Matrix, 330–336

overview, 13–14, 14, 23–24
IBM Data Studio, 123–126
IBM SmartCloud, 116–126
ID fields, Force.com records, 160
IDE (Integrated Development Environment),

159, 168, 238
identity management, 309–310
identity services, Windows Azure, 103
IEEE, 397
IGT (Israeli Association of Grid

Technologies), 381
implementation, 320
in-band appliances, 371
inconsistency windows, 275
indexing, DB2/pureXML, 122

Index 435

http://Force.com
http://Force.com

information resource categorization, 312
information technology infrastructure library

security management. See ITIL security
management

Infrastructure as a Service. See IaaS
infrastructure availability, 298
inherent data parallelism, 231–232
initial controller service, Cells-as-a-Service, 60
innovation in cloud computing, 12
instances

of applications, PaaS, 73
creating RDS, 32, 33
EC2 addresses, 41
monitoring, Amazon CloudWatch, 337
of roles, Windows Azure, 75
storage, EC2, 39, 40

instantiation, 59
Integrated Development Environment

(IDE), 159, 168, 238
Integration layer, Force.com, 158
integrity of cloud system, 308
Intel x86 processors, memory

virtualization in, 359
internal network access, 315–316
International Telecommunication

Union (ITU-T), 390
interoperability, 13
Interrupt Remapping, 360
interrupt-window exiting control,

VMCS, 358
Intra-cloud Network, CloudCMP, 406
intrusion detection systems, 310
I/O groups, IBM SVC, 372
I/O virtualization, reducing

overheads of, 360
IP addresses, whitelisted, 315
ISACA, 317
ISO/IEC 21827 standard, 316
ISO/IEC 27001-27006 standards, 316–317
isolation

enforcement, Windows Azure, 103
of multi-tenancy, 66
subnet, 314
VM, 314

Israeli Association of Grid
Technologies (IGT), 381

ITIL (information technology infrastructure library)
security management, 317

COBIT, 317
NIST, 317

ITU-T (International Telecommunication
Union), 390

J
Java

bulk loading data program for Salesforce.com,
161–166

terminology, 80
Java Script Object Notation (JSON) format, 222
JavaFX, 239
JobTracker, Hadoop MapReduce, 134
join complexity, increase with sharding, 215

K
key pair, generating from EC2 console, 44
keys

domain, in SDB, 30
management of, 310
object, in Amazon S3, 27
in S3, 26–28

key-value pairs, SDB, 115
key-value stores, 206, 221
keywords, SDB, 30
Khayyam, Omar, 2–18

L
Latest distribution, YCSB Workload

Generator, 403
legal issues, 10, 318
libraries, Picasa website, 183–185
Librato Availability Services, 299–301
lifecycle operations, Cloud System Matrix, 59
Like feature, Facebook, 5, 174
links, OCCI, 397
Linux

login remotely to EC2, 34
Lustre, 364–366

Lisp functional programming language, 229
list partitioning, 212
ListUploader for Windows, 194
litigation related issues, 322–323
load balancing, 67–68

DNS based, 68
in EC2, 39
Elastic Load Balancer, 39, 52
GlusterFS, 369
Windows Azure, 102

location entity types, Facebook, 178
location information, Twitter, 187, 188, 188
log shipping, 277
Logic layer, Force.com, 158
Logical UNits (LUNs), 370
Logical Volume Manager (LVM), 370
Login button plug-in, Facebook, 174
login remotely to EC2, 32, 34

436 Index

http://Force.com
http://Salesforce.com
http://Force.com

logs
in Amazon S3, 29, 29
HBase, 281

Lookup relationships, Force.com records, 160
low-impact systems, 311
Lustre Clients, 365
Lustre system, 364–366

M
mailing list, sharing documents with, 198
Managed Disk Group (MDG), IBM SVC, 373
managed disks, IBM SVC, 373
management

IaaS, 330–339
Amazon CloudWatch, 336–339
CloudSystem Matrix, 330–336

other systems, 344–347
Compuware, 346–347
HP CloudAssure, 344–345
RightScale, 345–346

overview, 329
PaaS, 339–342
monitoring class, 341
Windows Azure, 339–342

SaaS
Force.com, 342
overview, 342

management API, Windows Azure, 341
Management category of security control, 311
Map function, MapReduce, 128
Map phase, MapReduce, 128
Map Reduce paradigm, 224–237

algorithms, 232–237
breadth-first search, 235–237
sorting, 233–234
TF-IDF, 234–235
word count, 232–233

functional programming paradigm, 229–230
inherent data parallelism, 231–232
model of, 128–134
parallel architectures and computing models,

230–231
data versus task parallelism, 231
Flynn’s classification, 230–231

programming model, 227–229
MapReduce applications, 132

Apache Hadoop, 127
architecture of, 133–134
checkpoint/restart, Hadoop, 300
dataflow, 132–133
HBase, 221
non-Java, 132

architecture of, 133–134
dataflow, 132–133

overview, 127
security, 297

Markov chain based workload generator, 400
Markov chain state transition probabilities, 400
Mashups technology, 136–148

Yahoo! Pipes tool, 137–141
data sources, 140–141
generating CityNews, 137–140
operations, 140–141

YQL, 141–148
delete statements, 147–148
example of, 143–146
overview, 142
update statements, 147–148

master cluster, HBase, 280
Master-Detail relationships, Force.com records, 160
master-slave replication, 210, 210, 212–213
matching shared secrets, OAuth, 190
Matrix resource configuration, 56–58
MDBS (multidatabase system), 209
MDG (Managed Disk Group), IBM SVC, 373
MDisks, IBM SVC, 373
MDS (Metadata servers), Lustre, 365
MDT (metadata target), Lustre, 365
measured service, required in cloud computing, 9
memcache service, Google App Engine, 111, 113
memory

hardware support for, 358–360
reducing overheads of virtualization, 359
virtualization in Intel x86 processors, 359

message encryption, Windows Azure, 103
metadata

article, storing, 49–51
retrieving, SDB, 50

Metadata API, Force.com, 159
Metadata servers (MDS), Lustre, 365
metadata tables, shared table method, 288, 291
metadata target (MDT), Lustre, 365
micro-blogging services, 172
Microsoft Management Console (MMC), 340–341
middleware availability, 298
MIMD (Multiple Instruction Multiple Data

Stream), 231
MISD (Multiple Instruction and Single Data

Stream), 230
mobile devices, 6
moderate impact systems, 311
MongoDB system, 222–224, 282–283

concepts, 222–223
programming, 223–224

Index 437

http://Force.com
http://Force.com
http://Force.com
http://Force.com

monitoring
Compuware, 346–347
instances, Amazon CloudWatch, 337
Windows Azure, 340–341

monitoring class, 341
monotonic-write-consistency, 276
mon-put-metric-alarm command, 52
Multi-Cloud Engine, RightScale, 346
multidatabase system (MDBS), 209
multi-part uploads, 30
Multiple Instruction and Single Data Stream

(MISD), 230
Multiple Instruction Multiple Data Stream

(MIMD), 231
multitasking, in cloud computing and grid

computing, 379
multi-tenancy, 284–297

access control, 287–291
resource sharing, 288–291
Salesforce.com, 291–294

authentication, 287
in cloud computing and grid computing, 379
HDFS
architecture, 294–296
security, 296–297

isolation of, 66
levels, 285–286
overview, 18, 64–66
requirements for, 285
Salesforce.com, 157
tenants and users, 286

multi-tenancy risk, 323
MXML language, 238, 241

N
NameNode, HDFS, 294
name-value pair method, in multi-tenant system,

290
NAT (Network Address Translation), 265
National Institute of Standards (NIST)

CDMI, 390
definition of cloud computing, 8–9
DMTF reference architecture, 396
ITIL Security Management, 317
security control categories, 311

native hypervisors, 353
Native XML Database (NXD), 117
natural disasters, recovery from, 322
NC (Node Controller), Eucalyptus, 264
Nephele, 263
.NET diagnostics API, 341
Net Search Extender (NSE) engine, 122

Netcharts application, 342
Netlog, 205, 212–213
Network Address Translation (NAT), 265
network configuration, Cloud System Matrix, 58
Network Time Protocol (NTP), 309
networks

handling disruptions in, 197–198
networking
overview, 41
resources, 41–42

patterns in, 314
subnet isolation, 314
VM isolation, 314

virtualization based on, 370–373
HP SVSP, 371
IBM SVC, 371–373

Newsfeed feature, Facebook, 173
NGinx, 259–360
Nimsoft product, 342
NIST. See National Institute of Standards
Node Controller (NC), Eucalyptus, 264
node reservation system, 418–419
nodes, IBM SVC, 372
North Bridge survey, 12
NoSQL systems, 217–221

HBase technology, 217–221
object databases, 222–224
overview, 206

Notification feature, Facebook, 173
NSE (Net Search Extender) engine, 122
NTP (Network Time Protocol), 309
NXD (Native XML Database), 117

O
OAuth security protocol, 189–193
object databases, 222–224
object ids, MongoDB, 222
object storage servers (OSSs), Lustre, 364
object storage targets (OSTs),

Lustre, 364–365
objects

CDMI APIs, 392
S3, 26–28

OCCI (Open Cloud Computing Interface),
397, 397

offerings, DMTF, 394
OGF (Open Grid Forum), 397–398
Olio, Cloudstone, 399
on demand self-service, 9
on premise applications, Windows Azure, 91
online information, 5
OnStart() method, Windows Azure, 80

438 Index

http://Salesforce.com
http://Salesforce.com

OnSubmitBtnClick method,
Windows Azure, 78

Open Cirrus, 415–419
cloud sustainability dashboard, 419
node reservation system, 418–419
process of getting onto, 415–416
research tests, 416–418
scalable monitoring system, 419

Open Cloud Computing Interface (OCCI),
397, 397

Open Graph API, 173, 175–179
Open Graph tags, 180–181

Facebook, 180–181
open social platform from Google, 188
Picasa website, 181–185
API, 181–183
libraries, 183–185

privacy, 188–193
Twitter website, 185–188
APIs, 186–188

Open Grid Forum (OGF), 397–398
Open Grid Services Architecture, 377
Open Social API, 171
OpenNebula project, 260–263
OpenNebula SunStone, 262
operation mix, YCSB Workload Generator, 403
Operational category of security control, 311, 313
operators, Yahoo! Pipes, 141
oplog, MongoDB, 282
optimal WAN latency, CloudCMP, 406
OS Abstraction Layer, Librato, 299, 300
OSSs (object storage servers), Lustre, 364
OSTs (object storage targets), Lustre, 364–365
out-of-band appliances, 371
overheads

I/O virtualization, reducing, 360
memory virtualization, reducing, 359

P
PaaS (Platform as a Service), 16, 314–316

Apache Hadoop platform, 126–136
distributed file system, 134–136
HDFS API, 135–136
MapReduce model, 128–134
overview, 127–128
running non-Java MapReduce applications,
132–134

external network access, 315
Google App Engine, 108–114
developing and deploying on, 108
developing applications, 108–111
overview, 108

using persistent storage, 111–114
internal network access, 315–316
managing, 339–342
monitoring class, 341
Windows Azure, 339–342

Mashups technology, 136–148
Yahoo! Pipes tool, 137–141
YQL, 141–148

overview, 13–14, 14, 73–74
security server, 316
server security, 316
storage, 114–126
AWS, 115–116
DADX, 124–125
IBM Data Studio, 123, 125–126
IBM SmartCloud, 116–126
pureXML, 118, 122–126
service oriented architectures, 123–124
WORF, 124–125

Windows Azure, 74–107
Azure App Fabric platform, 96–97
cloud storage services, 98–105
CPU time billing, 89
deployment, 82–90
designing Pustak Portal in, 105–107
example, 75–77
Fabric Controller, 93–94
Java terminology, 80
passing messages, 77–81
programming model, 97–98
runtime environment, 91–93
SQL Azure, 95–96
testing, 82–90

page blobs, Windows Azure, 99
parallelism, data versus task, 231
paravirtualization, 356, 362
partition function, MapReduce, 227
Partition Key property, Azure tables, 101
partitioning, 208–217

functional decomposition, 209
master-slave replication, 210
in Netlog, 212–213
Pustak Portal data, 213–215
rows, 210–212
sharding, 210–212
Windows Azure, 103, 107

partitioning-tolerance, CAP theorem, 272
passing messages, 77–81
patches, testing, 311
payment for cloud systems, 380
PeekMessage() method, Windows Azure, 79–80
performance, HP Cloud Assure, 345

Index 439

performance overhead, trap and emulate
virtualization, 356

performance tier, YCSB, 404
periodic reviews of security controls, 313
persistent storage, 111–114
Persistent Storage Service, CloudCMP, 406–407
Photos feature, Facebook, 173
physical infrastructure, 308
physical security, 309
physical server configuration, Cloud System

Matrix, 57
Picasa website, 181–185

API, 181–183
libraries, 183–185
overview, 171

picklist, Salesforce.com, 154
Pig framework, Apache Hadoop, 127
pipes, Unix, 137
pipes framework, Apache Hadoop, 132
pivot table record, name-value pair method,

290, 293
Platform as a Service. See PaaS
platforms

advanced functionality of, 244–245
Salesforce.com, 158–161
architecture overview, 158–160
database, 160–161

plug-ins
database, YCSB, 402
Eclipse, 108, 110, 111
Facebook
Login button, 174
recommendations, 175
social, 174–175

GDocsBar, 194
popularity distributions, YCSB Workload

Generator, 403
portals, Google Docs application, 193–194
pre-allocated columns method, in multi-tenant

system, 290, 291
primary nodes, MongoDB, 282
privacy

of data, 320–321
future importance of, 7
Open Graph tags, 188–193

private clouds
defined, 9
public versus, 10–11

private IP address, 41
privilege levels, 354
probes method of failure monitoring, 298
process virtualization, 352

processing flow, MapReduce, 225
processors, hardware support for, 357–358
production deployment environment,

Windows Azure, 86
programming, model of, 97–98,

227–229
with Force.com, 161–171
MongoDB system, 223–224
visual, 409
web role, 97–98
worker role, 97–98

property, defined, 80
protection domains, 360
protection rings, 354, 355
protocols

GDP, 195
GRAM, 375
GridFTP, 375
GRIP, 375
GSI, 375
NTP, 309
OAuth security, 189–193
Zab, 268

proxies, reverse, 258–260
public clouds

defined, 9
private versus, 10–11

public information, text mining of, 5
public IP addresses, 41
Publish menu, Windows Azure, 86, 87
publishing documents,

Google Docs, 199, 199
pure functions, 229
pureXML, 116–122

advanced features of, 122–123
using IBM Data Studio to enable DAAS,

123–126
Pustak Portal, 46, 51–53, 55–59, 245–248

adding video playback to, 247–248
author web site, 64
isolation of multiple tenants, 66
load balancing, 67–68
multi tenancy, 64–66

data, 207–208
designing, 105–107, 106–107
instantiation and management, 59
keeping data consistent, 276–277
Matrix resource configuration, 56–58
partitioning, 213–215
storage for, 106–107
template design for, 55–56

python Picasa library, 183–184

440 Index

http://Salesforce.com
http://Salesforce.com
http://Force.com

Q
queries, DB2/pureXML, 118, 120
Query feature, SDB, 31, 50
Queue mime types, CDMI APIs, 392
Queue service, Windows Azure, 85, 93, 99, 101
QUORUM value, 284

R
rack-awareness, HDFS, 295
range partitioning, 211, 211–212
RDS (Relational Database Service), Amazon, 23,

31–32, 116
Read Ahead translator, GlusterFS, 368
read or write access permissions, S3, 28
read-your-writes consistency, 276
real-time feature, Twitter, 185
real-time monitoring and notification, Windows

Azure, 341
real-user monitoring, Compuware, 346
recommendations plug-in, Facebook, 175
record size, YCSB Workload Generator, 403
redirection, 299
Reduce function

Lisp, 229
MapReduce, 128

Reduce phase, MapReduce, 128
Reduced Redundancy Storage (RRS), 29
regions

in Amazon S3, 30
in EC2, 37–38
in HBase, 220, 280
in S3, 115

regionserver, HBase, 220
Relational Database Service (RDS), Amazon, 23,

31–32, 116
Relationship fields, Force.com records, 160
RemoteObject invocation, Flex, 245
RemoteObject service, Flex, 243
replica sets, MongoDB, 282
replication

in Amazon S3, 29
GlusterFS, 369
HBase, 280
HDFS, 295

replication scenario, 276
replication tier, YCSB, 404
RESERVOIR Policy Engine, 263
re-sharding, 216
resource files, Google App Engine, 114
resource owner, OAuth, 190, 190
resource pools

Cloud System Matrix, 55, 330

required in cloud computing, 9
resource-based deployment, WORF, 124
resources, OCCI, 397
Response to Audit Processing Failures family of

security control, 311
REST-based APIs

Google Docs, 195
Picasa, 181, 182
Twitter, 186, 186
Windows Azure, 341

ResumableGDataFileUploader Java class, 197
reverse proxy, 263
reviews of security controls, periodic, 313
Riak, 283
Rich Internet Applications (RIA), 237–248

advanced platform functionality, 244–245
client-server example, 242–244
development environment, 238–239
example of, 239–241
Pustak Portal, 245–248

RightScale system, 345–346
risk assessment, 312
risk management, 311–313

concepts of, 311–312
process of, 312–313

roles, in access control, 287
root AMI, 38
round-robin partitioning, 210
Route 53, 42
Row Keys, Azure tables, 101
row partitioning, 210–212
RRS (Reduced Redundancy Storage), 29
RSS feeds, Yahoo! Pipes, 138–139, 139
Run() method, Windows Azure, 80–81
runtime libraries, RIA platforms, 237
runtime maintenance

CloudSystem Matrix, 330, 332
DMTF, 394

S
S3. See Simple Storage Service, Amazon
S3 browsers, 25
S3-backed instances, 40
SaaS (Software as a Service), 153–154, 171–173

Google Docs application, 193–200
APIs, 195–200
embedding in other HTML pages, 199–200
example of, 196–197
handling disruptions in network, 197–198
sharing documents with mailing list, 198
using portal, 193–194

managing

Index 441

http://Force.com

SaaS (Software as a Service) (Cont.)
Force.com, 342
overview, 342

Open Graph tags, 180–181
open social platform from Google, 188
Picasa website, 181–185
privacy, 188–193
Twitter website, 185–188

overview, 13–14, 14, 153–154
Salesforce.com, 154–171
customizing application, 157
customizing features, 157–158
database, 160
Force.com, 161–171
platform, 158–161
setting up, 154–156

social computing services, 171–193
defined, 171–173
Facebook website, 173–179

Safe Harbor laws, 318
SAKs (storage account keys), Windows Azure, 104
Salesforce Object Query Language (SOQL) query,

169
Salesforce.com, 154–171

access control, 291–294
customizing application, 157
customizing features, 157–158
database, 160
Force.com
example of, 162, 166–171
programming with, 161–171

platform, 158–161
architecture overview, 158–160
database, 160–161

service model, 14
setting up, 154–156

sandboxes
Force.com, 159
Google App Engine, 114
overview, 313–314

sanitization of audit logs, 310
Sarbanes-Oxley act, 318
SAS 70 (Statement on Auditing Standards), 320
SC (Storage Controller), Eucalyptus, 264, 266
scalability

challenge in cloud models, 18
in cloud computing, 12
overview, 102–103

scalability tier, YCSB, 404
scalable, configurable, multi-tenant efficient

instances level, 286
scalable monitoring system, 419

Scale Out systems, 256–257
Scale Up systems, 256–257
scaling

applications with reverse proxies, 258–260
Cloud System Matrix, 333
computation, 256–272
Amdahl’s Law, 257–258
Cloud Bursting, 260–263
EUCALYPTUS, 263–266
hybrid cloud, 260–263
reverse proxies, 258–260
Scale Out versus Scale Up, 256–257
ZooKeeper system, 266–272

in EC2, 39
HBase, 220
latency, CloudCMP, 406
resources, Cloud System Matrix, 59
storage, 272–284
AP systems, 275–280
CAP Theorem, 272–275
weakly consistent storage systems, 280–284
Windows Azure, 103

SDB. See SimpleDB
Search API, Facebook, 178, 180
Search Engine VM (SVM), 64, 66
Search feature, Facebook, 178
secondary NameNode, HDFS, 295
secondary nodes, MongoDB, 282
secondary use of data, 321–322
Secret Key, AWS, 25, 27
Securing the Cloud, 323, 324
security, 296–297

architecture standards for, 316–317
CMM, 316
ENISA, 317
ISO/IEC 27001-27006, 316–317
ITIL security management, 317
SSE, 316

breaches of, 322
data handling, 320–322
design patterns, 313–316
CMDB, 314
depth, 313
honeypots, 313
network patterns, 314
PaaS system, 314–316
sandboxes, 313–314

downside of public clouds, 13
EC2 command line utilities environment

settings, 36
evaluation frameworks, 325–326
CSA, 325–326

442 Index

http://Force.com
http://Salesforce.com
http://Force.com
http://Salesforce.com
http://Force.com
http://Force.com

TCG, 326
handling issues, 321
BCP, 322
data location, 321
DR, 322
secondary use of data, 321–322
security breaches, 322

HP Cloud Assure, 344
introduction, 307–308
legal issues, 318
litigation related issues, 322–323
physical, 309
requirements, 308–311
risk management, 311–313
concepts of, 311–312
process of, 312–313

S3, 28–29
selecting cloud service providers, 323–325
listing risks, 323–324
security processes, 324–325
system management, 325
technology, 325

server, 316
storage, Windows Azure, 104
third party issues, 319–320
contractual issues, 319–320
overview, 10

virtual, 309–311
access management, 310
auditing, 310
break-glass procedures, 310
cloud time service, 309
identity management, 309–310
key management, 310
security monitoring, 310
security testing, 311

security controls, 311–313
security groups, EC2, 42, 46, 47
Security Guidance for Critical Areas of Focus in

Cloud Computing whitepaper, 326
self-healing feature, GlusterFS, 369
self-service interface, Cloud System Matrix, 54
self-service monitoring, 332
sensitive instructions, 355–356
serialization, defined, 80
server security, 316
server virtualization, 351–361

hardware support for, 356–361
I/O virtualization, 360–361
memory, 358–360
processors, 357–358

hypervisors

overview, 353–354
types of, 353–354

I/O virtualization, reducing overheads of, 360
memory virtualization, reducing overheads of,

359
trap and emulate, 354–355
limitations of, 355–356
software extensions to, 356

service agreements, 321
service availability, Windows Azure, 104
Service Bus, Azure App Fabric, 96, 105
Service Catalog, Cloud System Matrix, 54
service configuration, Windows Azure, 77
service level agreements (SLAs), 339–340, 401
Service Oriented Architecture (SOA), 123–124,

390
service package, Windows Azure, 77
Service Provider (SP), 60, 64
service scaling, Cloud System Matrix, 59
Service Template Designer Portal, Cloud System

Matrix, 55–56
Service Template (ST), 60
service types, cloud, 13–19
Service User (SU), 60
session consistency, 276
set iteration loops, Force.com, 169
shadow page tables, 358
sharding, 210–212

automatic support, 217
changes in database schema, 216–217
disadvantages of, 215–216
example of, 213
HBase, 220
partitioning in Netlog, 212–215
partitioning Pustak Portal data, 213–215

shared machine method, 284
shared pool of assets, grid computing, 379
shared process method, 284
shared table approach, in multi-tenant system, 284,

288, 289
shredding XML data, 117, 122
Shuffle phase, MapReduce, 132, 225
SIENA (European Standards and Interoperability

for Infrastructure Implementation Initiative),
390

SIMD (Single Instruction Multiple Data Stream),
230–231

Simple DB (SDB), 30–31
administration of, 31
Amazon Web Services, 115
availability of, 31
data organization and access, 30–31

Index 443

http://Force.com

Simple DB (SDB) (Cont.)
granting or revoking access, 50
initializing client, 49
Query feature, 50
retrieving metadata, 50
writing entry attributes to, 49–50

Simple Storage Service (S3), Amazon, 24–30
accessing, 24–25
administration of, 28–30
AWS, 115
buckets, 26–28
getting started with, 25–26
keys, 26–28
large object uploads, 30
multi-part uploads, 30
objects, 26–28

simplicity of usage, in cloud versus grid
computing, 380

Single Instruction Multiple Data
Stream (SIMD), 230–231

Single Instruction, Single Data stream (SISD), 230
single sign-on, 287
SiteScope, HP, 332
SLAs (service level agreements), 339–340, 401
slave cluster, HBase, 280
slaveOkay flag, MongoDB, 282
sloppy programming, 414
SmartCloud, IBM, 116–126
SNIA (Storage Networking Industry

Association), 390–393
SOA (Service Oriented Architecture), 123–124, 390
social applications, 173–174
social computing services, 171–193

defined, 171–173
Facebook website, 173–179
Open Graph API, 175–179
social applications on, 173–174
social plug-ins, 174–175

social graph, Facebook, 175
social networking, 3–5, 172–173
social plug-ins, 174–175
socio-centric networks, 172
SODA (Symposium of Discrete

Algorithms) 2010, 228
software

See also SaaS
extensions to trap and emulate server

virtualization, 356
face recognition, 6

Software as a Service. See SaaS
SOQL (Salesforce Object Query Language)

query, 169

source code management system, Force.com, 159
sources, Yahoo! Pipes, 140
SP (Service Provider), 60, 64
split-path architecture, 371
splits, Hadoop MapReduce, 132
(SPMD) Single Program Multiple Data model, 231
SQL Azure, 95–96, 107
SRS (System Resource State), Eucalyptus, 266
SSE (system security engineering), 316
ST (Service Template), 60
staging deployment environment,

Windows Azure, 86
Standard Instance family, 37, 38
standards, 389–398

CDMI, 390
DMTF reference architecture, 394–396
IEEE, 397
NIST, 396
OGF, 397–398
SNIA, 390–393

Statement on Auditing Standards (SAS 70), 320
statements, YQL

delete, 147–148
update, 147–148

static files, Google App Engine, 114
statistical information, Amazon

CloudWatch, 337
statistics module, YCSB, 402
status, Twitter, 185
stolen data, 322
storage, 114–126, 363–373

article metadata, 49–51
AWS, 115–116
RDS, 116
S3, 115
SDB, 115

block virtualization
network-based virtualization, 370–373, 371,
371–373

overview, 369–373
DADX, 124–125
file virtualization, 363–369
distributed file systems with centralized
metadata, 364–366

distributed file systems with distributed
metadata, 366–369

GlusterFS system, 367–369
Lustre system, 364–366

IBM Data Studio, 123, 125–126
IBM SmartCloud, 116–122, 116–126
pureXML, 118, 122
advanced features of, 122–123

444 Index

http://Force.com

using IBM Data Studio to enable DAAS,
123–126

for Pustak Portal, 106–107
resources, 39, 39–41
service oriented architectures, 123–124
WORF, 124–125, 125

storage account keys (SAKs), Windows Azure, 104
storage account objects, creating in Windows

Azure, 78
storage accounts, Windows Azure, 84, 99
storage architecture, DB2/pureXML, 118
storage availability, Windows Azure, 104
storage benchmarks, 399
Storage Controller (SC), Eucalyptus, 264, 266
storage deployment periods, 10
Storage Networking Industry Association (SNIA),

390–393
storage resources, sharing in multi-tenant

system, 288
storage service tags, Cloud System Matrix, 58
storage service, Windows Azure runtime

environment, 91, 93
Storage Services, Amazon. See Amazon Storage

Services
Streaming APIs, Twitter, 186
Streaming framework, Apache Hadoop, 132
striping, Lustre, 365
stuffing XML data in large objects, 117
SU (Service User), 60
subnet isolation, 314
subpoena risks, 323
subscriptions, Azure, 84
Sugar CRM, 158
super columns, Cassandra, 221
SVM (Search Engine VM), 64, 66
switch-based network virtualization, 370
Symposium of Discrete Algorithms (SODA) 2010,

228
synthetic monitoring, Compuware, 347
system benchmarks, 399
System fields, Force.com records, 160
System Resource State (SRS), Eucalyptus, 266
system security engineering (SSE), 316
system virtualization, 352, 352

T
table service, Windows Azure, 99, 100–101
table sharing approach, in multi-tenant system,

288, 289
tables, Windows Azure, 85, 93
tags, Open Graph. See Open Graph tags
task parallelism, versus data, 231

Tasklet Execution Engine (TEE), 413
TaskLet Repository (TLR), 412
tasklets, 409–413, 413
tasks, Hadoop MapReduce, 134
TaskTrackers, Hadoop MapReduce, 134, 297, 300
TCG (trusted computing group), 326
TCP response time, CloudCMP, 406
TCP throughput, CloudCMP, 406
Technical category of security control, 311
technologies

Application Service Providers, 384
autonomic computing, 383
cloud computing, 13–19
challenges for, 1, 18–19
IaaS, 15–16
PaaS, 16
SaaS, 1, 18–19

distributed computing, 381–382
grid computing, 374–381
characteristics of grids, 374–375
cloud computing versus, 378–381
grid projects, 378
grid technologies, 375–378
overview, 374–375

hypervisors, 361–363
VMware, 361–362
XenServer virtual machine monitor, 362–363

overview, 351, 384–385
server virtualization, 351–361
hardware support for, 356–361
hardware support for I/O virtualization,
360–361

hypervisors, 353–354
reducing overheads of I/O virtualization, 360
reducing overheads of memory
virtualization, 359

trap and emulate, 354–356
storage, 363–373
block virtualization, 369–373
file virtualization, 363–369

utility computing, 382–383
TEE (Tasklet Execution Engine), 413
TeleManagement Forum, 390
templates

design of, 55–56
DMTF, 394
tasklet, 412

Tenant Id column, shared table method, 288
tenants, 286
Tera Sort algorithm, 233
Term Frequency – Inverse Document Frequency

(TF-IDF), 234–235

Index 445

http://Force.com

termination, 320
testing

Force.com, 159
patches, 311
security, 311
Windows Azure, 82–90

text mining of public information, 5
third party issues, 319–320

contractual issues, 319–320
contract negotiation, 319–320
due diligence, 319
implementation, 320
termination, 320

overview, 10
time billing, CPU, 89
time-dependent APIs, Twitter, 186, 187
TLR (TaskLet Repository), 412
TM (transfer manager) API, 261
tokens

delegation, Hadoop, 296–297
Hadoop, 296
OAuth, 190

Tools, Cloudstone, 399
TraceSource class, .NET diagnostics API, 341
traffic statistics for popular websites, 18, 18
Transaction Processing Performance Council-C

(TPC-C) benchmark, 398
transactional paradigm, 301
transfer manager (TM) API, 261
translation, binary, 356
Translators, GlusterFS, 368
trap and emulate server virtualization, 354–355

limitations of, 355–356
software extensions to, 356

triggers, Force.com, 168–169
trusted computing group (TCG), 326
Tucker, Steve, 374
tweets, Twitter, 185
Twitter messages, Yahoo! Pipes, 146, 147
Twitter website, 185–188

APIs, 186–188
overview, 171

U
Ubuntu Linux, 299
Uniform distribution, YCSB Workload Generator,

403
unify translator, GlusterFS, 368
unique identifiers for objects, CDMI APIs, 392
Unix pipes, 137
UPDATE command, DB2/pureXML, 121
update statements, 147–148

upgrade domains, 340
uploads, multi-part, 30
user as contributor principle, 172
User Generated Content (UGC), 171–172
user inputs, Yahoo! Pipes, 141
user interface, customizing Salesforce.com, 158
User Interface (UI) layer, Force.com, 159
users, 286
utility computing, 382–383
Utility Data Center (UDC), 382

V
validation, DB2/pureXML, 122
VanderPool, 357
variable consistency, Dynamo, 283–284
VDisks, IBM SVC, 372–373
vector clocks, Dynamo, 283
vendor lock-in, 13
versioning, in Amazon S3, 30
vertical hybrid models, 11
vertical partitioning, Netlog, 212
vertical scaling, 256
video playback, adding to Pustak Portal, 247–248
virtual infrastructure, 308
Virtual Machine Control Structure (VMCS),

357–358
Virtual Machine Monitor (VMM),

353, 361–362
virtual machines (VMs), 351, 353
virtual organizations (VOs), 375, 376
Virtual Private Cloud (VPC), 42, 260
Virtual Processor ID (VPID), 359
virtual security, 309–311

access management, 310
auditing, 310
break-glass procedures, 310
cloud time service, 309
identity management, 309–310
key management, 310
security monitoring, 310
security testing, 311

virtual server configuration, Cloud System
Matrix, 56–57

virtual volumes, 370, 372
virtualization

blocks, 369–373
HP SVSP, 371
IBM SVC, 371–373
network-based virtualization, 370–373

files, 363–369
distributed file systems with centralized
metadata, 364–366

446 Index

http://Force.com
http://Force.com
http://Salesforce.com
http://Force.com

distributed file systems with distributed
metadata, 366–369

GlusterFS system, 367–369
Lustre system, 364–366

Virtualization Manager (VM) API, 261
Virtualization Server managers (VSMs),

HP SVSP, 371
visual programming, 409
Visual Studio Cloud Service Solution, 76
Visual Studio Web Developer Express, 75
Visualforce framework, Force.com, 159
VM entry VT-x, 358
VM exit, VT-x, 358
VM isolation, 314
VM Sizes, Windows Azure, 90
VMCS (Virtual Machine Control Structure),

357–358
vmkernel, 361
VMM (Virtual Machine Monitor), 353, 361–362
VMs (virtual machines), 351, 353
VMware

hypervisors, 361–362
images, 38

VMX non-root operation, 357
VMX process, 361
VMX root operation, 357
VOs (virtual organizations), 375, 376
VPC (Virtual Private Cloud), 42, 260
VPID (Virtual Processor ID), 359
VSMs (Virtualization Server managers),

HP SVSP, 371
VT-d technology, 360–361
VT-x technology, 356–358

W
Walrus, Eucalyptus, 264, 266
WAN, CloudCMP, 406
WAR (Web Application Archive), 51
weak consistency, 275–276, 279–280
weakly consistent storage systems, 280–284

Cassandra, 283–284
Dynamo, 283–284
HBase technology, 280–282
MongoDB system, 282–283

Web 1.0, 3, 3
Web 2.0, 3–5
Web 3.0, 6, 7
Web Application Archive (WAR), 51
web portals, 60–64
Web role, Windows Azure, 75, 76, 78, 92, 97–98
web servers, 42–46

allowing external access to, 46

attaching EBS volumes, 45–46
creating instances, 43–45
selecting AMI, 43

Web Services API, 158
Web Services Description

Language (WSDL), 123
Web services model, 300–301
Web Services Object Runtime Framework

(WORF), 124–125
Web Services Resource Framework (WSRF), 377
WebService, Flex, 243
whitelisted IP addresses, 315
widgets, 409
Windows Azure, 74–107, 339–342

applications, 340–342
Azure App Fabric platform, 96–97
cloud storage services, 98–101
access control, 103–104
availability, 104
Blob service, 99–100
interoperability, 105
queue service, 101
reliability, 104
scalability, 102–103
security, 103–104
table service, 100–101

CPU time billing, 89
deployment, 82–90
designing Pustak Portal in, 105–107
example, 75–77
Fabric Controller, 93–94
Java terminology, 80
passing messages, 77–81
programming model, 97–98
runtime environment, 91–93
SLAs, 339–340
SQL Azure, 95–96
testing, 82–90

Windows client, login remotely to EC2, 35
wisdom of crowds, 8
word count, 232–233
WORF (Web Services Object Runtime

Framework), 124–125
Worker role, Windows Azure,

75, 76, 78, 97–98
Workflow Designer Portal, Cloud System

Matrix, 55
workload generator, YCSB, 402–403
workloads, 398
Write Behind translator, GlusterFS, 368
WSDL (Web Services Description Language), 123
WSRF (Web Services Resource Framework), 377

Index 447

http://Force.com

X
X.509 certificates, 36
X86 protection rings, 354, 355
XAML language, 239
XDS (XML data specifier) objects, 118
XenServer virtual machine monitor, 362–363
XML

data, inserting in databases, 120
datatypes, creating database tables with, 119
document databases, 206, 217
indexing, DB2/pureXML, 122
method, in multi-tenant system, 291
shredding, DB2/pureXML, 122
validation, DB2/pureXML, 122

XML data specifier (XDS) objects, 118
XML Schema Repository (XSR), 122
XMLPARSE keyword, DB2/pureXML, 120
XQuery, 120–121

Y
Yahoo! Cloud Serving Benchmark (YCSB),

402–405
example results, 405
measurements and results, 403–405
workload generator, 402–403

Yahoo! Pipes tool, 137–141
data sources, 140–141
generating CityNews, 137–140
operations, 140–141

Yahoo! Query Language (YQL), 141–148
delete statements, 147–148
example of, 143–146
overview, 142
update statements, 147–148

Yahoo! traffic statistics, 18
YCSB Client, 402
YouTube traffic statistics, 18
YQL Console, 142, 142, 144
YQL source, Yahoo! Pipes, 140

Z
Zipf distribution, YCSB Workload Generator, 403
znodes, ZooKeeper, 267
ZooKeeper Atomic Broadcast (Zab) protocol, 268
Zookeeper clustering infrastructure, HBase, 220
ZooKeeper system, 266–272

overview, 267–268
using API, 268–272

zxid (ZooKeeper Transaction Id),
ZooKeeper, 268

448 Index

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

	Front Cover
	Moving to the Cloud: Developing Apps in the New World of Cloud Computing
	Copyright
	Table of Contents
	About the Authors
	About the Technical Editor
	Contributors
	Foreword
	Preface
	Structure of the Book
	A Running Example: Pustak Portal

	Acknowledgments

	1 Introduction
	Introduction
	Where Are We Today?
	Evolution of the Web
	Web 2.0 and Social Networking
	Information Explosion
	Mobile Web

	The Future Evolution
	What is Cloud Computing?
	Cloud Deployment Models
	Private vs. Public Clouds

	Business Drivers for Cloud Computing
	Introduction to Cloud Technologies
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Technology Challenges

	Summary
	References

	2 Infrastructure as a Service
	Introduction
	Storage as a Service: Amazon Storage Services
	Amazon Simple Storage Service (S3)
	Accessing S3
	Getting Started with S3
	Organizing Data In S3: Buckets, Objects and Keys
	S3 Administration
	Large Objects and Multi-part Uploads

	Amazon Simple DB
	Data Organization and Access
	SDB Availability and Administration

	Amazon Relational Database Service

	Compute as a Service: Amazon Elastic Compute Cloud (EC2)
	Overview of Amazon EC2
	Accessing EC2 Using AWS Console
	Accessing EC2 Using Command Line Tools
	EC2 Computational Resources
	EC2 Storage Resources
	EC2 Networking Resources

	Simple EC2 Example: Setting up a Web Server
	Selecting the AMI
	Creating the Example EC2 Instance
	Attaching an EBS Volume
	Allowing External Access to the Web Server

	Using EC2 for Pustak Portal
	Document Store for the Article Portal
	Storing the Article Metadata
	EC2 Example: Auto-Scaling the Pustak Portal
	Auto-Scaling using AWS Beanstalk
	Application-controlled Auto-Scaling

	HP CloudSystem Matrix
	Basic Platform Features
	Implementing the Pustak Portal Infrastructure
	Template Design for Pustak Portal
	Resource Configuration
	Pustak Portal Instantiation and Management

	Cells-as-a-Service
	Introduction to Cells-as-a-Service
	Example: Setting Up a Web Portal
	Cell Specification for the Example

	Multi-tenancy: Supporting Multiple Authors to Host Books
	Isolation of Multiple Tenants

	Load Balancing the Author Web Site

	Summary
	References

	3 Platform as a Service
	Introduction
	Windows Azure
	A “Hello World” Example
	Example: Passing a Message
	Azure Test and Deployment
	Technical Details of the Azure Platform
	Windows Azure Runtime Environment
	Fabric Controller
	SQL Azure
	Azure AppFabric

	Azure Programming Model
	Web Role and Worker Role

	Using Azure Cloud Storage Services
	Blob Service
	Table Service
	Queue Service

	Handling the Cloud Challenges
	Scalability
	Security and Access Control
	Reliability and Availability
	Interoperability

	Designing Pustak Portal in Azure
	Storage for Pustak Portal

	Google App Engine
	Getting Started
	Developing a Google App Engine Application
	Using Persistent Storage

	Platform as a Service: Storage Aspects
	Amazon Web Services: Storage
	Amazon Simple Storage Service (S3)
	Amazon Simple DB
	Amazon Relational Database Services

	IBM SmartCloud: pureXML
	pureXML
	Advanced Features of pureXML
	Using IBM Data Studio to Enable DaaS
	Service-oriented Architectures
	WORF and DADX
	IBM Data Studio

	Apache Hadoop
	MapReduce
	A Simple Example of MapReduce
	Running non-Java MapReduce applications

	Dataflow in Map Reduce
	Hadoop MapReduce Architecture

	Hadoop Distributed File System
	HDFS API
	HDFS Example: Finding the Location of Data Blocks

	Mashups
	Yahoo! Pipes
	A Simple Yahoo! Pipe to Generate City News
	Pipes Data Sources and Operations

	Yahoo! Query Language
	YQL Overview
	YQL Example: Tweeting about New York Times Bestselling Books
	YQL Update and Delete Statements

	Summary
	References

	4 Software as a Service
	Introduction
	CRM as a Service, Salesforce.com
	A Feature Walk Through
	Customizing Salesforce.com
	Force.com: A Platform for CRM as a Service
	Architecture Overview
	Force.com Database

	Programming on Salesforce.com and Force.com
	A Force.com Example: Bulk Load of Data
	Force.com – A More Complex Example

	Social Computing Services
	What Constitutes “Social” Computing?
	Social Networks on the Web

	Case Study: Facebook
	Social Applications on Facebook
	Facebook Social Plug-ins
	Open Graph API

	Extending Open Graph
	Social Media Web Site: Picasa
	The Picasa API
	Wrapper Libraries

	Micro-Blogging: Twitter
	Twitter API

	Open Social Platform from Google
	Privacy Issues: OAuth
	Overview of OAuth

	Document Services: Google Docs
	Using Google Docs Portal
	Using Google Docs APIs
	A Simple Example
	Handling Disruptions in the Network
	Sharing the Document with a Mailing List
	Embedding Google Docs in Other HTML Pages

	Summary
	References

	5 Paradigms for Developing Cloud Applications
	Introduction
	Scalable Data Storage Techniques
	Example: Pustak Portal Data
	Scaling Storage: Partitioning
	Functional Decomposition
	Master-Slave Replication
	Row Partitioning or Sharding
	Case Study: Partitioning in Netlog
	Example: Partitioning the Pustak Portal Data
	Disadvantages of Sharding
	Change in Database Schema
	Automatic Sharding Support

	NoSQL Systems: Key-Value Stores
	HBase
	Cassandra

	NoSQL Systems: Object Databases
	MongoDB
	MongoDB concepts
	MongoDB programming

	MapReduce Revisited
	A Deeper Look at the Working of MapReduce Programs
	MapReduce Programming Model

	Fundamental Concepts Underlying MapReduce Paradigm
	Functional Programming Paradigm
	Parallel Architectures and Computing Models
	Flynn's Classification
	Data parallelism versus task parallelism

	Inherent Data Parallelism in MapReduce Applications

	Some Algorithms Using MapReduce
	Word Count
	Sorting
	TF-IDF
	Breadth-First Search

	Rich Internet Applications
	Getting Started
	RIA Development Environment

	A Simple (Hello World) Example
	Client-Server Example; RSS Feed Reader
	Advanced Platform Functionality
	Advanced Example: Implementing Pustak Portal
	Adding Video Playback to Pustak Portal

	Summary
	References

	6 Addressing the Cloud Challenges
	Introduction
	Scaling Computation
	Scale Out versus Scale Up
	Amdahl’s Law
	Scaling Cloud Applications with a Reverse Proxy
	Hybrid Cloud and Cloud Bursting: OpenNebula
	OpenNebula

	Design of a Scalable Cloud Platform: Eucalyptus
	ZooKeeper: A Scalable Distributed Coordination System
	Overview of ZooKeeper
	Using ZooKeeper API

	Scaling Storage
	CAP Theorem
	CAP Theorem Example
	Implications of CAP Theorem

	Implementing Weak Consistency
	Keeping Pustak Portal Data Consistent
	Asynchronous Replication
	Complexities of Weak Consistency

	Consistency in NoSQL Systems
	HBase
	MongoDB
	Dynamo/Cassandra

	Multi-Tenancy
	Multi-Tenancy Levels
	Tenants and Users
	Authentication
	Implementing Multi-Tenancy: Resource Sharing
	Resource Sharing

	Case Study: Multi-Tenancy in Salesforce.com
	Multi-Tenancy and Security in Hadoop
	HDFS Architecture
	HDFS Security
	MapReduce security

	Availability
	Failure Detection
	Application Recovery
	Librato Availability Services
	Use of Web Services Model

	Summary
	References

	7 Designing Cloud Security
	Introduction
	Cloud Security Requirements and Best Practices
	Physical Security
	Virtual Security
	Cloud Time Service
	Identity Management
	Access Management
	Break-Glass Procedures
	Key Management
	Auditing
	Security Monitoring
	Security Testing

	Risk Management
	Risk Management Concepts
	Risk Management Process

	Security Design Patterns
	Defense in Depth
	Honeypots
	Sandboxes
	Network Patterns
	VM Isolation
	Subnet Isolation

	Common Management Database
	Example: Security Design for a PaaS System
	External Network Access
	Internal Network Access
	Server Security
	Security Server

	Security Architecture Standards
	SSE-CMM
	ISO/IEC 27001-27006
	European Network and Information Security Agency (ENISA)
	ITIL Security Management
	COBIT
	NIST

	Legal and Regulatory Issues
	Third-party Issues
	Contractual Issues
	Due diligence
	Contract negotiation
	Implementation
	Termination

	Data Handling
	Data Privacy
	Data Location
	Secondary Use of Data
	Business Continuity Planning and Disaster Recovery
	Security Breaches

	Litigation Related Issues

	Selecting a Cloud Service Provider
	Listing the Risks
	Security Criteria for Selecting a Cloud Service Provider
	Security Processes
	System Management
	Technology

	Cloud Security Evaluation Frameworks
	Cloud Security Alliance
	European Network and Information Security Agency (ENISA)

	Trusted Computing Group

	Summary
	References

	8 Managing the Cloud
	Introduction
	Managing IaaS
	Management of CloudSystem Matrix
	IaaS Administrator of CloudSystem Matrix
	Self-Service Monitoring
	A Programming Example to Control Elasticity

	EC2 Management: Amazon CloudWatch

	Managing PaaS
	Management of Windows Azure
	Service Level Agreements (SLAs)
	Managing Applications in Azure

	Managing SaaS
	Monitoring Force.com: Netcharts
	Monitoring Force.com: Nimsoft

	Other Cloud-Scale Management Systems
	HP Cloud Assure
	RightScale
	Compuware

	Summary
	References

	9 Related Technologies
	Introduction
	Server Virtualization
	Hypervisor-based Virtualization
	Types of Hypervisors

	Techniques for Hypervisors
	Trap and Emulate Virtualization
	Limitations of Trap and Emulate Virtualization
	Software Extensions to Trap and Emulate Virtualization

	Hardware Support for Virtualization
	Hardware Support for Processor Virtualization
	Hardware Support for Memory Virtualization
	Hardware Support for IO Virtualization

	Two Popular Hypervisors
	VMware Virtualization Software
	XenServer Virtual Machine Monitor

	Storage Virtualization
	File Virtualization
	Distributed File Systems with Centralized Metadata
	Lustre

	Distributed File Systems with Distributed Metadata
	GlusterFS

	Block Virtualization
	Network-Based Virtualization
	HP SAN Virtualization Services Platform
	IBM SAN Volume Controller

	Grid Computing
	Overview of Grid Computing
	Three Fundamental Characteristics of a Grid

	A Closer Look at Grid Technologies
	Comparing Grid and Cloud
	Similarities between Grid and Cloud
	Differences between Grid and Cloud
	Combining Grid Computing with Cloud Computing

	Other Cloud-Related Technologies
	Distributed Computing
	Utility Computing
	Autonomic Computing
	Application Service Providers

	SUMMARY
	References

	10 Future Trends and Research Directions
	Introduction
	Emerging Standards
	Storage Networking Industry Association (SNIA)
	DMTF Reference Architecture
	NIST
	IEEE
	Open Grid Forum (OGF)

	Cloud Benchmarks
	Cloudstone
	Faban Workload Generator
	Cloudstone Measurements and Results
	Example Cloudstone Results

	Yahoo! Cloud Serving Benchmark
	YCSB Workload Generator
	YCSB Measurements and Results
	Example YCSB Results

	CloudCMP
	CloudCmp Architecture
	CloudCmp Results

	End-User Programming
	Visual Programming
	Programming by Example
	TaskLets
	Use of Cloud in TaskLet solution

	CoScriptor

	Open Cirrus
	Process of Getting onto Open Cirrus
	Management of Large Scale Cloud Research Tests
	Node Reservation System
	Scalable Monitoring System
	Cloud Sustainability Dashboard

	Open Research Problems in Cloud Computing
	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

